Towards Cognitive Internet: An Evolutionary Vision

  • Fabrizio Granelli
  • Dzmitry Kliazovich
  • Neumar Malheiros
Part of the Signals and Communication Technology book series (SCT)


The requirement to support an always increasing number of networking technologies and services to cope with context uncertainties in heterogeneous network scenarios leads to an increase of operational and management complexity of the Internet. Autonomous communication protocol tuning is then crucial in defining and managing the performance of the Internet. This chapter presents an evolutionary roadmap of communication protocols towards cognitive Internet in which the introduction of self-aware adaptive techniques combined with reasoning and learning mechanisms aims to tackle inefficiency and guarantee satisfactory performance even in complex and dynamic scenarios.

In this survey, we overview and compare existing adaptive protocol stack solutions, review the principles of cross-layer design as well as the agent-based and AI based self-configuration solutions. The fundamental principles of cognitive protocols, such as adaptation, learning, and goal optimization, are presented along with implementation examples. Finally, the chapter discusses future research on the topic.


Network Element Functional Block Packet Header Packet Structure Host Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bouabene, G., Jelger, C., Tschudin, C., Schmid, S., Keller, A., May, M.: The autonomic network architecture (ANA). IEEE J. Sel. Areas Commun. 28(1), 4–14 (2010). doi:10.1109/JSAC.2010.100102CrossRefGoogle Scholar
  2. 2.
    Bouet, M., Nguengang, G., Conan, V., Kousaridas, A., Spapis, P., Alonistioti, N.: Embedding cognition in wireless network management: an experimental perspective. IEEE Commun. Mag. 50(12), 150–160 (2012). doi:10.1109/MCOM.2012.6384465CrossRefGoogle Scholar
  3. 3.
    Chaves, L., Malheiros, N., Madeira, E., Garcia, I., Kliazovich, D.: A cognitive mechanism for rate adaptation in wireless networks. In: Strassner, J., Ghamri-Doudane, Y. (eds.) Modelling Autonomic Communications Environments. Lecture Notes in Computer Science, vol. 5844, pp. 58–71. Springer Berlin Heidelberg (2009). doi: 10.1007/978-3-642-05006-0_5
  4. 4.
    Chen, K., Shah, S.H., Nahrstedt, K.: Cross-layer design for data accessibility in mobile ad hoc networks. Wirel. Pers. Commun. 21(1), 49–76 (2002). doi:10.1023/A:1015509521662.
  5. 5.
    Clark, D.D., Partridge, C., Ramming, J.C., Wroclawski, J.T.: A knowledge plane for the internet. In: Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM’03), Karlsruhe, pp. 3–10. ACM, New York (2003). doi:10.1145/863955.863957Google Scholar
  6. 6.
    de Oliveira Filho, J.L., Kliazovich, D., Granelli, F., Madeira, E., da Fonseca, N.: CogMAC: a cognitive link layer for wireless local area networks. Wirel. Netw. 1–11 (2013). doi:10.1007/s11276-012-0536-y.
  7. 7.
    Deering, S., Hinden, R.: Internet Protocol, Version 6 (IPv6) Specification. IETF RFC 2460 (1998)Google Scholar
  8. 8.
    Demestichas, P., Stavroulaki, V., Boscovic, D., Lee, A., Strassner, J.: m@ANGEL: autonomic management platform for seamless cognitive connectivity to the mobile Internet. IEEE Commun. Mag. 44(6), 118–127 (2006). doi:10.1109/MCOM.2006.1668430Google Scholar
  9. 9.
    Dobson, S., Denazis, S., Fernández, A., Gaïti, D., Gelenbe, E., Massacci, F., Nixon, P., Saffre, F., Schmidt, N., Zambonelli, F.: A survey of autonomic communications. ACM Trans. Auton. Adapt. Syst. 1(2), 223–259 (2006). doi:10.1145/1186778.1186782CrossRefGoogle Scholar
  10. 10.
    Dobson, S., Sterritt, R., Nixon, P., Hinchey, M.: Fulfilling the vision of autonomic computing. Computer 43(1), 35–41 (2010). doi:10.1109/MC.2010.14CrossRefGoogle Scholar
  11. 11.
    Dressler, F., Akan, O.B.: A survey on bio-inspired networking. Comput. Netw. 54(6), 881–900 (2010). doi: New Network Paradigms
  12. 12.
    El Defrawy, K.M., El Zarki, M.S., Khairy, M.M.: Proposal for a cross-layer coordination framework for next generation wireless systems. In: Proceedings of the 2006 International Conference on Wireless Communications and Mobile Computing (IWCMC’06), Vancouver, pp. 141–146. ACM, New York (2006). doi:10.1145/1143549.1143580.
  13. 13.
    Facchini, C.: Bridging the gap between theory and implementation in cognitive networks: developing reasoning in today’s networks. Ph.D. thesis, University of Trento (2011)Google Scholar
  14. 14.
    Facchini, C., Holland, O., Granelli, F., da Fonseca, N.L., Aghvami, H.: Dynamic green self-configuration of 3G base stations using fuzzy cognitive maps. Comput. Netw. 57(7), 1597–1610 (2013). doi:
  15. 15.
    Fortuna, C., Mohorcic, M.: Trends in the development of communication networks: cognitive networks. Comput. Netw. 53(9), 1354–1376 (2009). doi:10.1016/j.comnet.2009.01.002.
  16. 16.
    Georgakopoulos, A., Tsagkaris, K., Karvounas, D., Vlacheas, P., Demestichas, P.: Cognitive networks for future internet: status and emerging challenges. IEEE Veh. Technol. Mag. 7(3), 48–56 (2012). doi:10.1109/MVT.2012.2204548CrossRefGoogle Scholar
  17. 17.
    Haykin, S.: Cognitive radio: brain-empowered wireless communications. IEEE J. Sel. Areas Commun. 23(2), 201–220 (2005). doi:10.1109/JSAC.2004.839380CrossRefGoogle Scholar
  18. 18.
    Jain, R.: Internet 3.0: Ten problems with current internet architecture and solutions for the next generation. In: IEEE Military Communications Conference (MILCOM 2006), Washington, DC, pp. 1–9 (2006). doi:10.1109/MILCOM.2006.301995Google Scholar
  19. 19.
    Jennings, B., van der Meer, S., Balasubramaniam, S., Botvich, D., O Foghlu, M., Donnelly, W., Strassner, J.: Towards autonomic management of communications networks. IEEE Commun. Mag. 45(10), 112–121 (2007). doi:10.1109/MCOM.2007.4342833Google Scholar
  20. 20.
    Kim, B.J.: A network service providing wireless channel information for adaptive mobile applications. I. proposal. In: IEEE International Conference on Communications (ICC), Helsinki, vol. 5, pp. 1345–1351 (2001). doi:10.1109/ICC.2001.937141Google Scholar
  21. 21.
    Kliazovich, D., Granelli, F., Redana, S., Riato, N.: Cross-layer error control optimization in 3G LTE. In: IEEE Global Telecommunications Conference (GLOBECOM’07), Washington, DC, pp. 2525–2529 (2007) doi:10.1109/GLOCOM.2007.480Google Scholar
  22. 22.
    Kliazovich, D., Granelli, F., Fonseca, N.L.S.D.: Architectures and cross-layer design for cognitive networks. In: Handbook on Sensor Networks, pp. 3–24. World Scientific, Singapore (2010)Google Scholar
  23. 23.
    Kliazovich, D., Malheiros, N., da Fonseca, N.L.S., Granelli, F., Madeira, E.: CogProt: a framework for cognitive configuration and optimization of communication protocols. In: Proceedings of the 2nd International Conference on Mobile Lightweight Wireless Systems (MOBILIGHT), Barcelona (2010)Google Scholar
  24. 24.
    Kliazovich, D., Granelli, F., da Fonseca, N.: Survey on signaling techniques for cognitive networks. In: IEEE 16th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Kyoto, pp. 5–10 (2011). doi:10.1109/CAMAD.2011.5941118Google Scholar
  25. 25.
    Kousaridas, A., Polychronopoulos, C., Alonistioti, N., Marikar, A., Mödeker, J., Mihailovic, A., Agapiou, G., Chochliouros, I., Heliotis, G.: Future internet elements: cognition and self-management design issues. In: Proceedings of the 2nd International Conference on Autonomic Computing and Communication Systems (Autonomics’08), Turin, pp. 13:1–13:6. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), Brussels (2008).
  26. 26.
    Lake, S.M.: Cognitive networking with software programmable intelligent networks for wireless and wireline critical communications. In: IEEE Military Communications Conference (MILCOM), Altantic City, vol. 3, pp. 1693–1699 (2005). doi:10.1109/MILCOM.2005.1605918Google Scholar
  27. 27.
    Malheiros, N., Kliazovich, D., Granelli, F., Madeira, E., da Fonseca, N.L.S.: A cognitive approach for cross-layer performance management. In: IEEE Global Telecommunications Conference (GLOBECOM 2010), Miami, pp. 1–5 (2010). doi:10.1109/GLOCOM.2010.5684313Google Scholar
  28. 28.
    Manoj, B.S., Rao, R.R., Zorzi, M.: CogNet: a cognitive complete knowledge network system. IEEE Wirel. Commun. 15(6), 81–88 (2008). doi:10.1109/MWC.2008.4749751CrossRefGoogle Scholar
  29. 29.
    Mitola, J., Maguire G.Q., J.: Cognitive radio: making software radios more personal. IEEE Pers. Commun. 6(4), 13–18 (1999). doi:10.1109/98.788210Google Scholar
  30. 30.
    Movahedi, Z., Ayari, M., Langar, R., Pujolle, G.: A survey of autonomic network architectures and evaluation criteria. IEEE Commun. Surv. Tutor. 14(2), 464–490 (2012). doi:10.1109/SURV.2011.042711.00078CrossRefGoogle Scholar
  31. 31.
    Pan, J., Paul, S., Jain, R.: A survey of the research on future internet architectures. IEEE Commun. Mag. 49(7), 26–36 (2011). doi:10.1109/MCOM.2011.5936152CrossRefGoogle Scholar
  32. 32.
    Paul, S., Pan, J., Jain, R.: Architectures for the future networks and the next generation internet: a survey. Comput. Commun. 34(1), 2–42 (2011). doi:
  33. 33.
    Postel, J.: Internet control message protocol. IETF RFC 792 (1981)Google Scholar
  34. 34.
    Ramakrishnan, K., Floyd, S., Black, D.: The addition of explicit congestion notification (ECN) to IP. IETF RFC 3168 (2001)Google Scholar
  35. 35.
    Raymer, D., Meer, S.v.d., Strassner, J.: From autonomic computing to autonomic networking: an architectural perspective. In: Fifth IEEE Workshop on Engineering of Autonomic and Autonomous Systems (EASE 2008), Belfast, pp. 174–183 (2008). doi:10.1109/EASe.2008.26Google Scholar
  36. 36.
    Samaan, N., Karmouch, A.: Towards autonomic network management: an analysis of current and future research directions. IEEE Commun. Surv. Tutor. 11(3), 22–36 (2009). doi:10.1109/SURV.2009.090303CrossRefGoogle Scholar
  37. 37.
    Stuckmann, P., Zimmermann, R.: European research on future internet design. IEEE Wirel. Commun. 16(5), 14–22 (2009). doi:10.1109/MWC.2009.5300298CrossRefGoogle Scholar
  38. 38.
    Thomas, R., Friend, D., DaSilva, L., MacKenzie, A.: Cognitive networks: adaptation and learning to achieve end-to-end performance objectives. IEEE Commun. Mag. 44(12), 51–57 (2006). doi:10.1109/MCOM.2006.273099CrossRefGoogle Scholar
  39. 39.
    Wang, Q., Abu-Rgheff, M.: Cross-layer signalling for next-generation wireless systems. In: IEEE Wireless Communications and Networking (WCNC 2003), New Orleans, vol. 2, pp. 1084–1089 (2003). doi:10.1109/WCNC.2003.1200522Google Scholar
  40. 40.
    Winter, R., Schiller, J.H., Nikaein, N., Bonnet, C.: CrossTalk: cross-layer decision support based on global knowledge. IEEE Commun. Mag. 44(1), 93–99 (2006). doi:10.1109/MCOM.2006.1580938CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Fabrizio Granelli
    • 1
  • Dzmitry Kliazovich
    • 2
  • Neumar Malheiros
    • 3
  1. 1.DISI – University of TrentoTrentoItaly
  2. 2.University of LuxembourgWalferdangeLuxembourg
  3. 3.University of CampinasCampinasBrazil

Personalised recommendations