Advertisement

Dynamic Channel Selection for Cognitive Femtocells

  • Gustavo Wagner Oliveira da CostaEmail author
  • Andrea Fabio Cattoni
  • Preben E. Mogensen
  • Luiz A. da Silva
Chapter
Part of the Signals and Communication Technology book series (SCT)

Abstract

The ever-growing demand for mobile broadband is pushing towards the utilization of small cells, including metrocells, picocells and femtocells. In particular, the deployment of femtocells introduces significant challenges. First, the massive number of expected femtocells cannot be deployed using the traditional planning and optimization techniques. This leads to uncoordinated deployment by the end-user. Second, the high density of femtocells, including vertical reuse, leads to very different inter-cell interference patterns than the ones traditionally considered in cellular networks. And last, but not least, the possibility of having closed-subscriber-groups aggravates the inter-cell interference problems. In order to tackle these issues we consider the implementation of some aspects of cognitive radio technology into femtocells, leading to the concept of cognitive femtocells. This chapter focuses on state-of-art techniques to manage the radio resources in order to cope with inter-cell interference in cognitive femtocells. Different techniques are presented as examples of gradually increasing sophistication of the cognitive femtocells, allowing for dynamic channel allocation, dynamic reuse and negotiated reuse based on information exchanged with neighbor cells.

Keywords

Channel Allocation Dynamic Channel Allocation Close Subscriber Group Countdown Timer Femtocell Deployment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA): Further advancements for E-UTRA physical layer aspects. Technical report 36.814 v9.0.0, 2010Google Scholar
  2. 2.
    Ahmed, F., Tirkkonen, O., Peltomäki, M., Koljonen, J.-M., Yu, C.-H., Alava, M.: Distributed graph coloring for self-organization in LTE networks. JECE 2010, 5:1–5:10 (2010)Google Scholar
  3. 3.
    Andrews, J.G., Claussen, H., Dohler, M., Rangan, S., Reed, M.C.: Femtocells: past, present, and future. IEEE J. Sel. Areas Commun. 30(3), 497–508 (2012)CrossRefGoogle Scholar
  4. 4.
    Claussen, H., Ho, L.T.W., Samuel, L.G.: Financial analysis of a pico-cellular home network deployment. In: IEEE ICC, Glasgow (2007)Google Scholar
  5. 5.
    da Costa, G.W.O.: Dynamic spectrum sharing among femtocells – coping with spectrum scarcity in 4G and beyond. PhD thesis, Radio Access Technology Section, Department of Electronic Systems, Aalborg University (2012)Google Scholar
  6. 6.
    da Costa, G.W.O., Cattoni, A.F., Kovacs, I.Z., Mogensen, P.E.: A fully distributed method for dynamic spectrum sharing in femtocells. In: 2012 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Paris, pp. 87–92 (2012)Google Scholar
  7. 7.
    Ellenbeck, J., Hartmann, C., Berlemann, L.: Decentralized inter-cell interference coordination by autonomous spectral reuse decisions. In: 14th European Wireless Conference (EW), Prague, pp. 1–7 (2008)Google Scholar
  8. 8.
    Etkin, R., Parekh, A., Tse, D.: Spectrum sharing for unlicensed bands. IEEE J. Sel. Areas Commun. 25(3), 517–528 (2007)CrossRefGoogle Scholar
  9. 9.
    Friedman, J.W., Mezzetti, C.: Learning in games by random sampling. J. Econ. Theory 98(1), 55–84 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Fudenberg, D., Tirole, J.: Game Theory. MIT, Cambridge (1991)Google Scholar
  11. 11.
    Garcia, L.G.U., Pedersen, K.I., Mogensen, P.E.: Autonomous component carrier selection: interference management in local area environments for LTE-advanced. IEEE Commun. Mag. 47(9), 110–116 (2009)CrossRefGoogle Scholar
  12. 12.
    Garcia, L.G.U., da Costa, G.W.O., Cattoni, A.F., Pedersen, K.I., Mogensen, P.E.: Self-organizing coalitions for conflict evaluation and resolution in femtocells. In: 2010 IEEE Global Telecommunications Conference (GLOBECOM), Miami, pp. 1–6 (2010)Google Scholar
  13. 13.
    Garcia, L.G.U., Kovacs, I.Z., Pedersen, K.I., da Costa, G.W.O., Mogensen, P.E.: Autonomous component carrier selection for 4G femtocells – a fresh look at an old problem. IEEE J. Sel. Areas Commun. 30(3), 525–537 (2012)CrossRefGoogle Scholar
  14. 14.
    Goldsmith, A.: Wireless Communications, chapter 4, pp. 99–125. Cambridge University Press, Cambridge (2005)Google Scholar
  15. 15.
    Holma, H., Toskala, A.: LTE for UMTS – OFDMA and SC-FDMA based radio access. Wiley, Chichester (2009)Google Scholar
  16. 16.
    IST-4-027756 WINNER II, IST-WINNER D1.1.2: “WINNER II Channel Models”, ver 1.1. Technical report, Winner II (2007)Google Scholar
  17. 17.
    Menon, R., MacKenzie, A.B., Buehrer, R.M., Reed, J.H.: A game-theoretic framework for interference avoidance in ad hoc networks. In: IEEE Global Telecommunications Conference (GLOBECOM’06), San Francisco, pp. 1–6, (2006)Google Scholar
  18. 18.
    Mogensen, P., Na, W., Kovacs, I.Z., Frederiksen, F., Pokhariyal, A., Pedersen, K.I., Kolding, T., Hugl, K., Kuusela, M.: LTE capacity compared to the Shannon bound. In: IEEE 65th Vehicular Technology Conference (VTC2007), Spring, Dublin, pp. 1234–1238 (2007)Google Scholar
  19. 19.
    Narayanan, L.: Channel assignment and graph multicoloring. In: Handbook of Wireless Networks and Mobile Computing, vol. 8, pp. 71–94. Wiley, New York (2002)Google Scholar
  20. 20.
    Pérez, D.L., et al.: OFDMA femtocells: a roadmap on interference avoidance. IEEE Commun. Mag. 47(9), 41–48 (2009)CrossRefGoogle Scholar
  21. 21.
    Saad, W., et al.: Coalitional game theory for communication networks: a tutorial. IEEE Signal Process. Mag. 26(5), 77–99 (2009)CrossRefGoogle Scholar
  22. 22.
    Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Suris, J.E., Dasilva, L.A., Han, Z., Mackenzie, A.B., Komali, R.S.: Asymptotic optimality for distributed spectrum sharing using bargaining solutions. IEEE Trans. Wirel. Commun. 8(10), 5225–5237 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Gustavo Wagner Oliveira da Costa
    • 1
    Email author
  • Andrea Fabio Cattoni
    • 1
  • Preben E. Mogensen
    • 2
  • Luiz A. da Silva
    • 3
    • 4
  1. 1.Radio Access Technology Section in Department of Electronic SystemsAalborg UniversityAalborgDenmark
  2. 2.Department of Electronic SystemsAalborg UniversityAalborgDenmark
  3. 3.Virginia Tech Research Center – ArlingtonArlingtonUSA
  4. 4.Trinity College DublinDublin 2Ireland

Personalised recommendations