# Metrics of Curves in Shape Optimization and Analysis

Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2090)

## Abstract

In these lecture notes we will explore the mathematics of the space of immersed curves, as is nowadays used in applications in computer vision. In this field, the space of curves is employed as a “shape space”; for this reason, we will also define and study the space of geometric curves, which are immersed curves up to reparameterizations. To develop the usages of this space, we will consider the space of curves as an infinite dimensional differentiable manifold; we will then deploy an effective form of calculus and analysis, comprising tools such as a Riemannian metric, so as to be able to perform standard operations such as minimizing a goal functional by gradient descent, or computing the distance between two curves. Along this path of mathematics, we will also present some current literature results (and a few examples of different “shape spaces”, including more than only curves).

### References

1. 1.
L. Ambrosio, G. Da Prato, A.C.G. Mennucci, An introduction to measure theory and probability, 2007. http//dida.sns.it/dida2/cl/07-08/folde2/pdf0
2. 2.
3. 3.
C.J. Atkin, The Hopf-Rinow theorem is false in infinite dimensions. Bull. Lond. Math. Soc. 7(3), 261–266 (1975) doi: 10.1112/blms/7.3.261
4. 4.
H. Brezis, Analisi Funzionale (Liguori Editore, Napoli, 1986). Italian translation of Analyse fonctionelle (Masson, Paris, 1983)Google Scholar
5. 5.
J. Canny, A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986) ISSN 0162-8828.Google Scholar
6. 6.
V. Caselles, F. Catte, T. Coll, F. Dibos, A geometric model for edge detection. Num. Mathematik 66, 1–31 (1993)
7. 7.
V. Caselles, R. Kimmel, G. Sapiro, Geodesic active contours, in Proceedings of the IEEE International Conference on Computer Vision, Cambridge, MA, June 1995, pp. 694–699Google Scholar
8. 8.
T. Chan, L. Vese, Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)
9. 9.
G. Charpiat, O. Faugeras, R. Keriven, Approximations of shape metrics and application to shape warping and empirical shape statistics. Found. Comput. Math. (2004) doi: 10.1007/s10208-003-0094-xgg819. INRIA report 4820 (2003)Google Scholar
10. 10.
G. Charpiat, R. Keriven, J.P. Pons, O. Faugeras, Designing spatially coherent minimizing flows for variational problems based on active contours, in ICCV (2005). doi: 10.1109/ICCV.2005.69Google Scholar
11. 11.
G. Charpiat, P. Maurel, J.-P. Pons, R. Keriven, O. Faugeras, Generalized gradients: Priors on minimization flows. Int. J. Comp. Vis. (2007). doi: 10.1007/s11263-006-9966-2Google Scholar
12. 12.
Y. Chen, H. Tagare, S. Thiruvenkadam, F. Huang, D. Wilson, K. Gopinath, R. Briggs, E. Geiser, Using prior shapes in geometric active contours in a variational framework. Int. J. Comp. Vis. 50(3), 315–328 (2002)
13. 13.
D. Cremers, S. Soatto, A pseuso distance for shape priors in level set segmentation, in 2nd IEEE Workshop on Variational, Geometric and Level Set Methods in Computer Vision, Nice, ed. by N. Paragios, Oct 2003, pp. 169–176Google Scholar
14. 14.
M.P. do Carmo, Riemannian Geometry (Birkhäuser, Boston, 1992)Google Scholar
15. 15.
A. Duci, A.C.G. Mennucci, Banach-like metrics and metrics of compact sets. arXiv preprint arXiv:0707.1174 (2007)Google Scholar
16. 16.
A. Duci, A.J. Yezzi, S.K. Mitter, S.Soatto, Shape representation via harmonic embedding, in International Conference on Computer Vision (ICCV03), vol. 1, Washington, DC, pp. 656–662 (IEEE Computer Society, Silver Spring, 2003). ISBN 0-7695-1950-4. doi: 10.1109/ICCV.2003.1238410Google Scholar
17. 17.
A. Duci, A.J. Yezzi, S. Soatto, K. Rocha, Harmonic embeddings for linear shape. J. Math Imag. Vis 25, 341–352 (2006). doi: 10.1007/s10851-006-7249-8
18. 18.
J. Eells, K.D. Elworthy, Open embeddings of certain Banach manifolds. Ann. Math. (2) 91, 465–485 (1970)Google Scholar
19. 19.
I. Ekeland, The Hopf-Rinow theorem in infinite dimension. J. Differ. Geom. 13(2), 287–301 (1978)
20. 20.
A.T. Fomenko, The Plateau Problem. Studies in the Development of Modern Mathematics (Gordon and Breach, New York, 1990)Google Scholar
21. 21.
M. Gage, R.S. Hamilton, The heat equation shrinking convex plane curves. J. Differ. Geom. 23, 69–96 (1986)
22. 22.
J. Glaunès, A. Trouvé, L. Younes, Modeling planar shape variation via Hamiltonian flows of curves, in Analysis and Statistics of Shapes, ed. by A. Yezzi, H. Krim. Modeling and Simulation in Science, Engineering and Technology, chapter 14 (Birkhäuser, Basel, 2005)Google Scholar
23. 23.
M. Grayson, The heat equation shrinks embedded planes curves to round points. J. Differ. Geom. 26, 285–314 (1987)
24. 24.
R.S. Hamilton, The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc. (N.S.) 7(1), 65–222 (1982) ISSN 0273-0979.Google Scholar
25. 25.
J. Itoh, M. Tanaka, The Lipschitz continuity of the distance function to the cut locus. Trans. A.M.S. 353(1), 21–40 (2000)Google Scholar
26. 26.
H. Karcher, Riemannian center of mass and mollifier smoothing. Comm. Pure Appl. Math. 30, 509–541 (1977)
27. 27.
M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models. Int. J. Comp. Vis. 1, 321–331 (1987)
28. 28.
S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, A. Yezzi, Gradient flows and geometric active contour models, in Proceedings of the IEEE International Conference on Computer Vision, Cambridge, MA (1995), pp. 810–815. doi:10.1109/ICCV.1995.466855Google Scholar
29. 29.
E. Klassen, A. Srivastava, W. Mio, S.H. Joshi, Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 26, 372–383 (2004). ISSN 0162-8828. doi: 10.1109/TPAMI.2004.1262333Google Scholar
30. 30.
W. Klingenberg, Riemannian Geometry (W. de Gruyter, Berlin, 1982)
31. 31.
S. Lang, Fundamentals of Differential Geometry (Springer, Berlin, 1999)
32. 32.
M. Leventon, E. Grimson, O. Faugeras, Statistical shape influence in geodesic active contours, IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head Island, SC, vol. 1 (2000), pp. 316–323. doi:10.1109/CVPR.2000.855835Google Scholar
33. 33.
Y. Li, L. Nirenberg, The distance function to the boundary, Finsler geometry and the singular set of viscosity solutions of some Hamilton-Jacobi equations. Comm. Pure Appl. Math. 58, 85–146 (2005)
34. 34.
R. Malladi, J. Sethian, B. Vemuri, Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17, 158–175 (1995)
35. 35.
A.C.G. Mennucci, A. Yezzi, G. Sundaramoorthi, Properties of Sobolev Active Contours. Interf. Free Bound. 10, 423–445 (2008)
36. 36.
A.C.G. Mennucci, On asymmetric distances, 2nd version, preprint, 2004. http://cvgmt.sns.it/papers/and04/
37. 37.
P.W. Michor, D. Mumford, Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. Documenta Math. 10, 217–245 (2005). http://www.univie.ac.at/EMIS/journals/DMJDMV/vol-10/05.pdf Google Scholar
38. 38.
P.W. Michor, D. Mumford, Riemannian geometris of space of plane curves. J. Eur. Math. Soc. (JEMS) 8, 1–48 (2006)
39. 39.
P.W. Michor, D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Appl. Comput. Harmonic Anal. 23, 76–113 (2007). doi: 10.1016/j.acha.2006.07.004. http://www.mat.univie.ac.at/~michor/curves-hamiltonian.pdf
40. 40.
W. Mio, A. Srivastava, Elastic-string models for representation and analysis of planar shapes, in Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004 (CVPR 2004), vol. 2 (2004), pp. 10–15. doi:10.1109/CVPR.2004.1315138Google Scholar
41. 41.
W. Mio, A. Srivastava, Elastic-string models for representation and analysis of planar shapes, in Conference on Computer Vision and Pattern Recognition (CVPR), June 2004. http://stat.fsu.edu/~anuj/pdf/papers/CVPR_Paper_04.pdf
42. 42.
D. Mumford, J. Shah, Boundary detection by minimizing functionals, in Proceedings CVPR 85: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 19–23, 1985, San Francisco, CA, 1985Google Scholar
43. 43.
D. Mumford, J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42, 577–685 (1989)
44. 44.
S. Osher, J. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on the Hamilton-Jacobi equations. J. Comp. Phys. 79, 12–49 (1988)
45. 45.
T.R. Raviv, N. Kiryati, N. Sochen, Unlevel-set: geometry and prior-based segmentation, in Proceedings of European Conference on Computer Vision, 2004 (Computer Vision-ECCV 2004), ed. by T. Pajdla (Springer, Berlin, 2004). http://dx.doi.org/10.1007/978-3-540-24673-2_5
46. 46.
R. Ronfard, Region based strategies for active contour models. Int. J. Comp. Vis. 13(2), 229–251 (1994). http://perception.inrialpes.fr/Publications/1994/Ron94 Google Scholar
47. 47.
M. Rousson, N. Paragios, Shape priors for level set representations, in Proceedings of the European Conference on Computer Vision, vol. 2 (2002), pp. 78–93Google Scholar
48. 48.
W. Rudin, Functional Analysis (McGraw-Hill, New York, 1973)
49. 49.
W. Rudin, Real and Complex Analysis (McGraw-Hill, New York, 1987)
50. 50.
J. Shah, H 0 type Riemannian metrics on the space of planar curves. Q. Appl. Math. 66, 123–137 (2008)
51. 51.
S. Soatto, A.J. Yezzi, DEFORMOTION: deforming motion, shape average and the joint registration and segmentation of images. ECCV (3), 32–57 (2002)Google Scholar
52. 52.
A. Srivastava, S.H. Joshi, W. Mio, X. Liu, Statistical shape analysis: clustering, learning, and testing. IEEE Trans. Pattern Anal. Mach. Intell. 27, 590–602 (2005). ISSN 0162-8828. doi: 10.1109/TPAMI.2005.86Google Scholar
53. 53.
G. Sundaramoorthi, A. Yezzi, A.C.G. Mennucci, Sobolev active contours, in VLSM, ed. by N. Paragios, O.D. Faugeras, T. Chan, C. Schnörr. Lecture Notes in Computer Science, vol. 3752 (Springer, Berlin, 2005), pp. 109–120. ISBN 3-540-29348-5. doi: 10.1007/11567646_10Google Scholar
54. 54.
G. Sundaramoorthi, J.D. Jackson, A. Yezzi, A.C.G. Mennucci, Tracking with Sobolev active contours, in Conference on Computer Vision and Pattern Recognition (CVPR06) (IEEE Computer Society, Silver Spring, 2006). ISBN 0-7695-2372-2. doi: 10.1109/CVPR.2006.314Google Scholar
55. 55.
G. Sundaramoorthi, A. Yezzi, A.C.G. Mennucci, G. Sapiro, New possibilities with Sobolev active contours, in Scale Space Variational Methods 07 (2007). http://ssvm07.ciram.unibo.it/ssvm07_public/index.html. “Best Numerical Paper-Project Award”; also [58]
56. 56.
G. Sundaramoorthi, A. Yezzi, A.C.G. Mennucci, Sobolev active contours. Int. J. Comp. Vis. (2007). doi: 10.1007/s11263-006-0635-2Google Scholar
57. 57.
G. Sundaramoorthi, A. Yezzi, A.C.G. Mennucci, Coarse-to-fine segmentation and tracking using Sobolev Active Contours. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) (2008). doi: 10.1109/TPAMI.2007.70751Google Scholar
58. 58.
G. Sundaramoorthi, A. Yezzi, A.C.G. Mennucci, G. Sapiro, New possibilities with Sobolev active contours. Int. J. Comp. Vis. (2008). doi: 10.1007/s11263-008-0133-9Google Scholar
59. 59.
A. Trouvé, L. Younes, Local geometry of deformable templates. SIAM J. Math. Anal. 37(1), 17–59 (electronic) (2005). ISSN 0036-1410Google Scholar
60. 60.
A. Tsai, A. Yezzi, W. Wells, C. Tempany, D. Tucker, A. Fan, E. Grimson, A. Willsky, Model-based curve evolution technique for image segmentation, in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001 (CVPR 2001), vol. 1, Dec 2001, pp. I-463, I-468. doi: 10.1109/CVPR.2001.990511Google Scholar
61. 61.
A. Tsai, A. Yezzi, A.S. Willsky, Curve evolution implementation of the mumford-shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. Image Process. 10(8), 1169–1186 (2001)
62. 62.
L.A. Vese, T.F. Chan, A multiphase level set framework for image segmentation using the mumford and shah model. Int. J. Comp. Vis. 50(3), 271–293 (2002)
63. 63.
A. Yezzi, A.C.G. Mennucci, Geodesic homotopies, in EUSIPCO04 (2004). http://www.eurasip.org/content/Eusipco/2004/defevent/papers/cr1925.pdf
64. 64.
A. Yezzi, A.C.G. Mennucci, Metrics in the space of curves. arXiv (2004)Google Scholar
65. 65.
A. Yezzi, A.C.G. Mennucci, Conformal metrics and true “gradient flows” for curves, in International Conference on Computer Vision (ICCV05) (2005), pp. 913–919. doi: 10.1109/ICCV.2005.60. URL http://research.microsoft.com/iccv2005/
66. 66.
A. Yezzi, A. Tsai, A. Willsky, A statistical approach to snakes for bimodal and trimodal imagery, in The Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999, vol. 2, October 1999, pp. 898, 903. doi:10.1109/ICCV.1999.790317Google Scholar
67. 67.
L. Younes, Computable elastic distances between shapes. SIAM J. Appl. Math. 58(2), 565–586 (1998). doi: 10.1137/S0036139995287685
68. 68.
L. Younes, P.W. Michor, J. Shah, D. Mumford, A metric on shape space with explicit geodesics. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 19(1), 25–57 (2008). ISSN 1120-6330. doi: 10.4171/RLM/506Google Scholar
69. 69.
C.T. Zahn, R.Z. Roskies, Fourier descriptors for plane closed curves. IEEE Trans. Comput. 21(3), 269–281 (1972). ISSN 0018-9340. doi: 10.1109/TC.1972.5008949Google Scholar
70. 70.
S.C. Zhu, T.S. Lee, A.L. Yuille, Region competition: Unifying snakes, region growing, energy/bayes/MDL for multi-band image segmentation, in ICCV (1995), p. 416. citeseer.ist.psu.edu/zhu95region.html