Skip to main content

Theoretical Description of Ionic Liquids

  • Chapter
  • First Online:
Book cover The Structure of Ionic Liquids

Part of the book series: Soft and Biological Matter ((SOBIMA))

Abstract

Ionic liquids are universally considered to be materials of the future. Their peculiar properties appeal to the most diverse technological areas such as chemical industry, electrochemistry, optics, environmental chemistry, medicine and nanotechnology. It is the peculiar microscopic structure that determines the macroscopic properties of these fluids and the tuning of these properties depends ultimately on small modifications of the material at the molecular level. Most of the technologically interesting properties that are proper to this class of compounds are due to the electrostatic interactions between the ionic components. Though these interactions are quite strong, the “sterical” mismatch between the ionic partners is such that the fluid remains liquid even at room temperature since the formation of a regular lattice is frustrated. Theoretical simulations of ionic liquids represent nowadays a well-established tool for predicting and explaining the properties of these materials and interpreting the experimental results. The framework in which it is possible to provide high quality studies of the microscopic structure of the ionic liquid is mainly represented by classical molecular mechanics and, only very recently, by ab-initio molecular dynamics. While the employed theoretical techniques are not very different from those used for conventional fluids, many difficulties arise because of the microscopic nature of ionic liquids. In this chapter we would like to summarize and review the recent developments and possible future opportunities of theoretical simulations of ionic liquids. In particular we will review some of the issues connected to the theoretical simulations of ionic liquids. We shall also review the theoretical methods in general and the peculiarities in their application to ionic liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Plechkova, N.V., Seddon, K.R.: Chem. Soc. Rev. 37, 123 (2008)

    Article  Google Scholar 

  2. Freemantle, M.: An Introduction to Ionic Liquids. RSC Publishing, Cambridge (2009)

    Google Scholar 

  3. Rogers, R.D., Seddon, K.R. (eds.): Ionic Liquids IIIA: Fundamentals, Progress, Challenges, and Opportunities: Properties and Structure, ACS Symp. Ser., vol. 901. American Chemical Society, Washington (2005)

    Google Scholar 

  4. Gaune-Escard, M., Seddon, K.R. (eds.): Molten Salts and Ionic Liquids: Never the Twain? Wiley, Hoboken (2010)

    Google Scholar 

  5. Plechkova, N.V., Seddon, K.R.: Chem. Soc. Rev. 37, 123 (2008)

    Article  Google Scholar 

  6. Rogers, R.D., Seddon, K.R. (eds.): Ionic Liquids IIIB: Fundamentals, Progress, Challenges, and Opportunities: Transformations and Processes, ACS Symp. Ser., vol. 902. American Chemical Society, Washington (2005)

    Google Scholar 

  7. Rogers, R.D., Plechkova, N.V., Seddon, K.R. (eds.): Ionic Liquids: From Knowledge to Application, ACS Symp. Ser., vol. 1030. American Chemical Society, Washington (2009)

    Google Scholar 

  8. Fujita, K., Nakamura, N., Igarashi, K., Samejima, M., Ohno, H.: Green Chem. 11, 351 (2009)

    Article  Google Scholar 

  9. Liu, Y., Shi, L., Wang, M., Li, Z., Liu, H.: Li J Green Chem. 7, 655 (2005)

    Article  Google Scholar 

  10. Polshettiwar, V., Varma, R.S.: Acc. Chem. Res. 41, 629 (2008)

    Article  Google Scholar 

  11. Garcia, B., Lavallee, S., Perron, G., Michot, C., Armand, M.: Electrochim. Acta 49, 4583 (2004)

    Article  Google Scholar 

  12. Galinski, M., Lewandowski, A., Stepniak, I.: Electrochim. Acta 51, 5567 (2006)

    Article  Google Scholar 

  13. Hu, Z., Margulis, C.J.: Acc. Chem. Res. 40, 1097 (2007)

    Article  Google Scholar 

  14. MacFarlane, D.R., Forsyth, M., Howlett, P.C., Pringle, J.M., Sun, J., Annat, G., Neil, W., Izgorodina, E.I.: Acc. Chem. Res. 40, 1165 (2007)

    Article  Google Scholar 

  15. Wilkes, J.S.: Green Chem. 4, 73 (2002)

    Google Scholar 

  16. Walden, P.: Bull. Acad. Imp. Sci. St.-Petersbourg 8, 405 (1914)

    Google Scholar 

  17. Walden, P.: Chem. Zentralbl. 85, 1800 (1914)

    Google Scholar 

  18. Wilkes, J.S., Zaworotko, M.J.: J. Chem. Soc. Chem. Commun. 965–967 (1992)

    Google Scholar 

  19. Hanke, C., Price, S., Lynden-Bell, R.: Mol. Phys. 99, 801 (2001)

    Article  ADS  Google Scholar 

  20. Morrow, T., Maginn, E.: J. Phys. Chem. B 106, 12807 (2002)

    Article  Google Scholar 

  21. Rogers, R.D., Seddon, K.R.: Science 302, 792 (2003)

    Article  Google Scholar 

  22. Freemantle, M.: Chem. Eng. News. 76, 32 (1998)

    Google Scholar 

  23. Fei, Z., Geldbach, T.J., Zhao, D., Dyson, P.J.: Chem. Eur. J. 12, 2122 (2006)

    Article  Google Scholar 

  24. Triolo, A., Russina, O., Bleif, H.J., Cola, E.D.: J. Phys. Chem. B 111, 4641 (2007)

    Article  Google Scholar 

  25. Triolo, A., Russina, O., Fazio, B., Appetecchi, G.B., Carewska, M., Passerini, S.: J. Chem. Phys. 130, 164521 (2009)

    Article  ADS  Google Scholar 

  26. Hayes, R., Imberti, S., Warr, G.G., Atkin, R.: Phys. Chem. Chem. Phys. 13, 3237 (2011)

    Article  Google Scholar 

  27. Russina, O., Triolo, A., Gontrani, L., Caminiti, R.: J. Phys. Chem. Lett. 3, 27 (2012)

    Article  Google Scholar 

  28. Castner, E.W.J., Margulis, C.J., Maroncelli, M., Wishart, J.F.: Ann. Rev. Phys. Chem. 62, 85 (2011)

    Article  ADS  Google Scholar 

  29. Fujii, K., Kanzaki, R., Takamuku, T., Kameda, Y., Kohara, S., Kanakubo, M., Shibayama, M., Ishiguro, S., Umebayashi, Y.J.: J. Chem. Phys. 135, 244502 (2011)

    Article  ADS  Google Scholar 

  30. Hardacre, C., Holbrey, J.D., Mullan, C.L., Youngs, T.G.A., Bowron, D.T.: J. Chem. Phys. 133, 074510 (2010)

    Article  ADS  Google Scholar 

  31. Bodo, E., Postorino, P., Mangialardo, S., Piacente, G., Ramondo, F., Bosi, F., Ballirano, P., Caminiti, R.: J. Phys. Chem. B 115, 13149 (2011)

    Article  Google Scholar 

  32. Fumino, K., Peppel, T., Geppert-Rybczynska, M., Zaitsau, D.H., Lehmann, J.K., Verevkin, S.P., Kockerling, M., Ludwig, R.: Phys. Chem. Chem. Phys. 11, 14064 (2011)

    Article  Google Scholar 

  33. Gontrani, L., Bodo, E., Triolo, A., Leonelli, F., D’Angelo, P., Migliorati, V., Caminiti, R.: J. Chem. Phys. B 116, 13024 (2012)

    Article  Google Scholar 

  34. Zahn, S., Thar, J., Kirchner, B.: J. Chem. Phys. 132, 124506 (2010)

    Article  ADS  Google Scholar 

  35. Maginn, E.J.: J. Phys. Cond. Matt. 21, 373101 (2009)

    Google Scholar 

  36. Turner, E.A., Pye, C.C., Singer, R.D.: J. Phys. Chem. A 107, 2277 (2003)

    Article  Google Scholar 

  37. Bodo, E., Caminiti, R.: J. Phys. Chem. A 114, 12506 (2010)

    Article  Google Scholar 

  38. Dommert, F., Wendler, K., Berger, R., Site, L.D., Holm, C.: ChemPhysChem 13, 1625 (2012)

    Article  Google Scholar 

  39. Del Popolo, M.G., Lynden-Bell, R.M., Kohanoff, J.: J. Phys. Chem. B 109, 5895 (2005)

    Article  Google Scholar 

  40. Buhl, M., Chaumont, A., Schurhammer, R., Wipff, G.: J. Phys Chem. B 109, 18591 (2005)

    Article  Google Scholar 

  41. Prado, C.E.R., Del Popolo, M.G., Youngs, T.G.A., Kohanoff, J., Lynden-Bell, R.M.: Mol. Phys. 104, 2477 (2006)

    Article  ADS  Google Scholar 

  42. Bagno, A., D’Amico, F., Saielli, G.: ChemPhysChem 8, 873 (2007)

    Article  Google Scholar 

  43. Schmidt, J., Krekeler, C., Dommert, F., Zhao, Y., Berger, R., Site, L.D., Holm, C.: J. Phys. Chem. B 114, 6150 (2010)

    Article  Google Scholar 

  44. Wendler, K., Zahn, S., Dommert, F., Berger, R., Holm, C., Kirchner, B., Delle Site, L.: J. Chem. Theory Comput. 7, 3040 (2011)

    Article  Google Scholar 

  45. Zahn, S., Wendler, K., Delle Site, L., Kirchner, B.: Phys. Chem. Chem. Phys. 13, 15083 (2011)

    Article  Google Scholar 

  46. Dommert, F., Schmidt, J., Krekeler, C., Zhao, Y.Y., Berger, R., Delle Site, L., Holm, C.: J. Mol. Liq. 152, 2 (2010)

    Article  Google Scholar 

  47. Canongia Lopes, J.N.A., Padua, A.A.H.: J. Phys. Chem. B 110, 7485 (2006)

    Google Scholar 

  48. Borodin, O.J.: Phys. Chem. B 113, 11463 (2009)

    Article  Google Scholar 

  49. Bodo, E., Gontrani, L., Triolo, A., Caminiti, R.: J. Phys. Chem. Lett. 1, 1095 (2010)

    Article  Google Scholar 

  50. Bodo, E., Gontrani, L., Caminiti, R., Plechkova, N.V., Seddon, K.R., Triolo, A.: J. Phys. Chem. B 114, 16398 (2010)

    Article  Google Scholar 

  51. Bodo, E., Chiricotto, M., Caminiti, R.J.: Phys Chem. B 115, 14341 (2011)

    Article  Google Scholar 

  52. Izgorodina, E.I.: Phys. Chem. Chem. Phys. 13, 4189 (2011)

    Google Scholar 

  53. Wang, Y., Voth, G.A.: J. Am. Chem. Soc. 127, 12192 (2005)

    Article  Google Scholar 

  54. Wang, Y., Voth, G.A.: J. Phys. Chem. B 110, 18601 (2006)

    Article  Google Scholar 

  55. de Andrade, J., Boes, E.S., Stassen, H.: J. Phys. Chem. B 106, 13344 (2002)

    Article  Google Scholar 

  56. Margulis, C.J., Stern, H.A., Berne, B.J.: J. Phys. Chem. B 106, 12017 (2002)

    Article  Google Scholar 

  57. Canongia Lopes, J.N., Deschamps, J., Padua, A.A.H.: J. Phys Chem. B 108, 2038 (2004)

    Google Scholar 

  58. Canongia Lopes, J.N., Deschamps, J., Padua, A.A.H.: ACS Symp. Ser. 901, 134 (2005)

    Google Scholar 

  59. Canongia Lopes, J.N., Padua, A.A.H.: J. Phys. Chem. B 110, 19586 (2006)

    Google Scholar 

  60. Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J.: J. Am. Chem. Soc. 118, 11225 (1996)

    Article  Google Scholar 

  61. Rigby, J., Izgorodina, E.I.: Phys. Chem. Chem. Phys. 15, 1632 (2013)

    Article  Google Scholar 

  62. Borodin, O., Smith, G.D.: J. Phys. Chem. B 110, 11481 (2006)

    Article  Google Scholar 

  63. Zahn, S., Kirchner, B.: J. Phys. Chem. A 112, 8430 (2008)

    Article  Google Scholar 

  64. Zahn, S., Uhlig, F., Thar, J., Spickermann, C., Kirchner, B.: Angew. Chem. Int. Ed. 47, 3639 (2008)

    Article  Google Scholar 

  65. Grimme, S.J.: Comp. Chem. 27, 1787 (2006)

    Article  Google Scholar 

  66. Bodo, E., Ceccacci, F., Ramondo, F., Postorino, P., Mangialardo, S.: J. Chem. Phys. B 116, 13878 (2012)

    Article  Google Scholar 

  67. Maginn, E.J.: Acc. Chem. Res. 40, 1200 (2007)

    Google Scholar 

  68. Keen, A.A.: Appl. Cryst. 34, 172 (2000)

    Google Scholar 

  69. Zhang, Y., Maginn, E.J.: J. Chem. Phys. 136, 144116 (2012)

    Article  ADS  Google Scholar 

  70. Watt, S.W., Chisholm, J.A., Jones, W., Motherwell, S.: J. Chem. Phys. 121, 9565 (2004)

    Article  ADS  Google Scholar 

  71. Eike, D.M., Maginn, E.J.: J. Chem. Phys. 124, 164503 (2006)

    Article  ADS  Google Scholar 

  72. Angell, C.A., Byrne, N., Belieres, J.P.: Acc. Chem. Res. 40, 1228 (2007)

    Article  Google Scholar 

  73. Greaves, T.L., Drummond, C.J.: Chem. Rev. 108, 206 (2008)

    Article  Google Scholar 

  74. Xu, W., Angell, C.A.: Science 302, 422 (2003)

    Google Scholar 

  75. Yoshizawa, M., Xu, W., Angell, C.A.: J. Am. Chem. Soc. 125, 15411 (2003)

    Article  Google Scholar 

  76. Fumino, K., Wulf, A., Ludwig, R.: Angew. Chem. Int. Ed. 48, 2009 (3184)

    Google Scholar 

  77. Fumino, K., Reichert, E., Wittler, K., Hempelmann, R., Ludwig, R.: Angew. Chem. Int. Ed. 51, 2012 (6236)

    Google Scholar 

  78. Walden P., Bull. Acad. Imper. Sci. St. Petersburg, 8, 405–422 (1914)

    Google Scholar 

  79. Atkin, R., Warr, G.G.: J. Phys Chem. B 112, 4164 (2008)

    Article  Google Scholar 

  80. Greaves, T.L., Weerawardena, A., Krodkiewska, I., Drummond, C.J.: J. Phys. Chem. B 112, 896 (2008)

    Article  Google Scholar 

  81. Mamontov, E., Luo, H., Dai, S.: J. Phys. Chem. B 113, 159 (2009)

    Article  Google Scholar 

  82. Song, X., Hamano, H., Minofar, B., Kanzaki, R., Fujii, K., Kameda, Y., Kohara, S., Watanabe, M., Ishiguro, S.I., Umebayashi, Y.: J. Phys. Chem. B 116, 2801 (2012)

    Article  Google Scholar 

  83. Hayes, R., Imberti, S., Warr, G.G., Atkin, R.: Phys. Chem. Chem. Phys. 13, 13544 (2011)

    Article  Google Scholar 

  84. Gilli, G., Gilli, P.: The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory, 1st edn. International Union of Crystallography Monographs on Crystallography, Oxford University Press (2009)

    Google Scholar 

  85. Gilli, P., Gilli, G.: J. Mol. Struct. 972, 2 (2010)

    Article  ADS  Google Scholar 

  86. Gilli, P., Gilli, G.: J. Mol. Struct. 844–845, 328 (2007)

    Article  Google Scholar 

  87. Fumino, K., Wulf, A., Ludwig, R.: Phys. Chem. Chem. Phys. 11, 8790 (2009)

    Article  Google Scholar 

  88. Reed, A.E., Curtiss, L.A., Weinhold, F.: Chem. Rev. 88, 899 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Bodo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bodo, E., Migliorati, V. (2014). Theoretical Description of Ionic Liquids. In: Caminiti, R., Gontrani, L. (eds) The Structure of Ionic Liquids. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-319-01698-6_5

Download citation

Publish with us

Policies and ethics