Skip to main content

Thermo-responsive Amphiphilic Di- and Triblock Copolymers Based on Poly(N-isopropylacrylamide) and Poly(methoxy diethylene glycol acrylate): Aggregation and Hydrogel Formation in Bulk Solution and in Thin Films

  • Conference paper
  • First Online:

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 140))

Abstract

In this feature, we provide a comprehensive view and conclusions on recent investigations on the micellar aggregation of amphiphilic model polymers, the subsequent hydrogel formation, and the thermoresponsive behavior. The results obtained in bulk solution as well as in thin films are combined and compared, from the structural as well as kinetic point of view. The studies used two extensive series of diblock and symmetrical triblock copolymers, which were prepared by reversible addition-fragmentation chain transfer (RAFT). Derived from the thermo-responsive parent polymers poly(N-isopropylacrylamide) (PNIPAM) and poly(methoxy diethylene glycol acrylate) (PMDEGA), respectively, both series exhibit a lower critical solution type phase transition in aqueous media in the range of 30–40 °C. The model polymers consist of a long hydrophilic, thermo-responsive middle block, which is end-capped by two relatively small, but strongly hydrophobic blocks made from various vinyl polymers, preferentially from polystyrene. Their aggregation and hydrogel formation as well as their thermo-responsive behavior are systematically studied in dilute and concentrated aqueous solution as well as in thin films. For that, complementary methods were applied such as turbidimetry, fluorescence correlation spectroscopy (FCS), dynamic light scattering (DLS), small-angle X-ray (SAXS) and neutron scattering (SANS), rheology, white light interferometry, atomic force microscopy (AFM), optical probes, X-ray (XRR) and neutron reflectivity (XRR), grazing-incidence small-angle X-ray (GISAXS) and neutron scattering (GISANS) as well as attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). All amphiphilic block copolymers self-organize at several hierarchical levels in bulk solution as well as in thin films. First, the association of the hydrophobic building blocks results in micelle-like aggregates. Then, the micelles cluster and eventually form networks, that make the systems gel. At elevated temperatures, the hydrophilic blocks undergo a collapse transition, inducing major structural changes at the molecular as well as supramolecular levels. Characteristic differences between PNIPAM and PMDEGA based solutions and thin films are worked out, concerning the self-organization, the width and hysteresis of the transition and the switching kinetics. Thin films of PNIPAM and PMDEGA based polymers differ with respect to long ranged correlations and the stability against dewetting. When probing polymer collapse, aggregation behavior, segmental dynamics and mechanical properties of the micellar solutions and the hydrogels, both the chain architecture and the chemical nature of the thermo-responsive block are found to play an important role for the detailed phase behavior.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kopeček J (2009) J Polym Sci, Part A: Polym Chem 47:5929–5946

    Article  Google Scholar 

  2. Vlierberghe SV, Dubruel P, Schacht E (2011) Biomacromolecules 12:1387–1408

    Article  Google Scholar 

  3. Wanka G, Hoffmann H, Ulbricht W (1994) Macromolecules 27:4145–4159

    Article  CAS  Google Scholar 

  4. Mortensen K (2001) Coll Surf A 183–185:277–292

    Article  Google Scholar 

  5. Hamley IW (2005) Block copolymers in solution: fundamentals and applications. Wiley, Chichester

    Book  Google Scholar 

  6. Booth C, Attwood D (2000) Macromol Rapid Comm 21:501–527

    Article  CAS  Google Scholar 

  7. Cohen Stuart MA (2008) Colloid Polym Sci 286:855–864

    Article  CAS  Google Scholar 

  8. Kimerling AS, Rochefort WE, Bhatia SR (2006) Ind Eng Chem Res 45:6885–6889

    Article  CAS  Google Scholar 

  9. Madsen J, Armes SP (2012) Soft Matter 8:592–605

    Article  CAS  Google Scholar 

  10. Zhulina EB, Borisov OV (2012) Macromolecules 45:4429–4440

    Article  CAS  Google Scholar 

  11. Halperin A (2006) J Macromol Sci C: Polym Rev 46:173–214

    Article  CAS  Google Scholar 

  12. Tsitsilianis C, Iliopoulos I (2002) Macromolecules 35:3662–3667

    Article  CAS  Google Scholar 

  13. Annable T, Buscall R, Ettelaie R, Whittlestone D (1993) J Rheol 37:695–726

    Article  CAS  Google Scholar 

  14. Winnik MA, Yekta A (1997) Curr Opin Colloid Interface Sci 2:424–436

    Article  CAS  Google Scholar 

  15. Chassenieux C, Nicolai T, Benyahia L (2011) Curr Opin Colloid Interface Sci 16:18–26

    Article  CAS  Google Scholar 

  16. de Molina PM, Herfurth C, Laschewsky A, Gradzielski M (2011) Prog Colloid Polym Sci 138:67–72

    Google Scholar 

  17. Chaterji S, Kwon IK, Park K (2007) Prog Polym Sci 32:1083–1122

    Article  CAS  Google Scholar 

  18. Tokarev I, Minko S (2009) Soft Matter 5:511–524

    Article  CAS  Google Scholar 

  19. Liu R, Fraylich M, Saunders BR (2009) Colloid Polym Sci 287:627–643

    Article  CAS  Google Scholar 

  20. Kratz K, Hellweg T, Eimer W (2000) Coll Surf A 170:137–149

    Article  CAS  Google Scholar 

  21. Stieger M, Richtering W, Pedersen JS, Lindner P (2004) J Chem Phys 120:6197–6206

    Article  CAS  Google Scholar 

  22. Dimitrov I, Trzebicka B, Müller AHE, Dworak A, Tsvetanov CB (2007) Prog Polym Sci 32:1275–1343

    Article  CAS  Google Scholar 

  23. Tsitsilianis C (2010) Soft Matter 6:2372–2388

    Article  CAS  Google Scholar 

  24. Bivigou-Koumba AM, Görnitz E, Laschewsky A, Müller-Buschbaum P, Papadakis CM (2010) Colloid Polym Sci 288:499–517

    Article  CAS  Google Scholar 

  25. Miasnikova A, Laschewsky A, De Paoli G, Papadakis CM, Müller-Buschbaum P, Funari SS (2012) Langmuir 28:4479–4490

    Article  CAS  Google Scholar 

  26. Taylor LD, Cerankowski LD (1975) J Polym Sci Part A: Polym Chem 13:2551–2570

    CAS  Google Scholar 

  27. Platé NA, Lebedeva TL, Valuev LI (1999) Polymer J Jpn 31:21–27

    Article  Google Scholar 

  28. Schlaad H, Diehl C, Gress A, Meyer M, Demirel AL, Nur Y, Bertin A (2010) Macromol Rapid Comm 31:511–525

    Article  CAS  Google Scholar 

  29. Schild HG (1992) Prog Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  30. Aseyev V, Tenhu H, Winnik F (2006) Adv Polym Sci 196:1–85

    Article  CAS  Google Scholar 

  31. Aseyev V, Tenhu H, Winnik F (2011) Adv Polym Sci 242:29–89

    Article  CAS  Google Scholar 

  32. Nykänen A, Nuopponen M, Laukkanen A, Hirvonen S-P, Rytelä M, Turanen O, Tenhu H, Mezzenga R, Ikkala O, Ruokolainen J (2007) Macromolecules 40:5827–5834

    Article  Google Scholar 

  33. Zhou XC, Ye XD, Zhang GZ (2007) J Phys Chem B 111:5111–5115

    Article  CAS  Google Scholar 

  34. Nykänen A, Nuopponen M, Hiekkataipale P, Hirvonen S-P, Soininen A, Tenhu H, Ikkala O, Mezzenga R, Ruokolainen J (2008) Macromolecules 41:3243–3249

    Article  Google Scholar 

  35. Riess G (2003) Prog Polym Sci 28:1107–1170

    Article  CAS  Google Scholar 

  36. Jenkins AD, Jones RG, Moad G (2010) Pure Appl Chem 82:483–491

    Article  CAS  Google Scholar 

  37. Moad G, Rizzardo E, Thang SH (2008) Acc Chem Res 41:1133–1142

    Article  CAS  Google Scholar 

  38. Matyjaszewski K, Müller AHE (eds) (2009) Controlled and living polymerizations. From mechanisms to applications. Wiley-VCH, Weinheim

    Google Scholar 

  39. Barner-Kowollik C (ed) (2008) Handbook of RAFT polymerization. Wiley-VCH, Weinheim

    Google Scholar 

  40. Moad G, Rizzardo E, Thang SH (2012) Aust J Chem 65:985–1076

    Article  CAS  Google Scholar 

  41. Miasnikova A, Laschewsky A (2012) J Polym Sci, Part A: Polym Chem 50:3313–3323

    Article  CAS  Google Scholar 

  42. Troll K, Kulkarni A, Wang W, Darko C, Bivigou-Koumba AM, Laschewsky A, Müller-Buschbaum P, Papadakis CM (2008) Colloid Polym Sci 286:1079–1092

    Article  CAS  Google Scholar 

  43. Bivigou-Koumba AM, Kristen J, Laschewsky A, Müller-Buschbaum P, Papadakis CM (2009) Macromol Chem Phys 210:565–578

    Article  CAS  Google Scholar 

  44. Adelsberger J, Kulkarni A, Jain A, Wang W, Bivigou-Koumba AM, Busch P, Pipich V, Holderer O, Hellweg T, Laschewsky A, Müller-Buschbaum P, Papadakis CM (2010) Macromolecules 43:2490–2501

    Article  CAS  Google Scholar 

  45. Jain A, Kulkarni A, Bivigou-Koumba AM, Wang W, Busch P, Laschewsky A, Müller-Buschbaum P, Papadakis CM (2010) Macromol Symp 291/292:221–229

    Article  Google Scholar 

  46. Adelsberger J, Meier-Koll A, Bivigou-Koumba AM, Busch P, Holderer O, Hellweg T, Laschewsky A, Müller-Buschbaum P, Papadakis CM (2011) Colloid Polym Sci 289:711–720

    Article  CAS  Google Scholar 

  47. Adelsberger J, Metwalli E, Diethert A, Grillo I, Bivigou-Koumba AM, Laschewsky A, Müller-Buschbaum P, Papadakis CM (2012) Macromol Rapid Comm 33:254–259

    Article  CAS  Google Scholar 

  48. Adelsberger J, Grillo I, Kulkarni A, Sharp M, Bivigou-Koumba AM, Laschewsky A, Müller-Buschbaum P, Papadakis CM (2013) Soft Matter 9:1685–1699

    Article  CAS  Google Scholar 

  49. Brown W, Mortensen K (eds) (2000) Scattering in polymeric and colloidal systems. Gordon and Breach, Amsterdam

    Google Scholar 

  50. Grillo I (2008) Chapter 13: Small-angle neutron scattering and application in soft condensed matter. In: Borsali R, Pecore R (eds) Soft matter characterization, vol 1. Springer, New York

    Google Scholar 

  51. Ewen B, Richter D (1997) Adv Polym Sci 134:1–129

    Article  CAS  Google Scholar 

  52. Richter D, Monkenbusch M, Arbe A, Colmenero J (2005) Adv Polym Sci 174:1–221

    Google Scholar 

  53. Päch M, Zehm D, Lange M, Dambowsky I, Weiss J, Laschewsky A (2010) J Am Chem Soc 132:8757–8765

    Article  Google Scholar 

  54. Skrabania K, Miasnikova A, Bivigou-Koumba AM, Zehm D, Laschewsky A (2011) Polym Chem 2:2074–2083

    Article  CAS  Google Scholar 

  55. Wang W, Troll K, Kaune G, Metwalli E, Ruderer M, Skrabania K, Laschewsky A, Roth SV, Papadakis CM, Müller-Buschbaum P (2008) Macromolecules 41:3209–3218

    Article  CAS  Google Scholar 

  56. Wang W, Kaune G, Perlich J, Papadakis CM, Koumba AMB, Laschewsky A, Schlage K, Röhlsberger R, Roth SV, Cubitt R, Müller-Buschbaum P (2010) Macromolecules 43:2444–2452

    Article  CAS  Google Scholar 

  57. Zhong Q, Wang W, Adelsberger J, Golosova A, Koumba AMB, Laschewsky A, Funari SS, Perlich J, Roth SV, Papadakis CM, Müller-Buschbaum P (2011) Colloid Polym Sci 289:569–581

    Article  CAS  Google Scholar 

  58. Zhong Q, Metwalli E, Kaune G, Rawolle M, Bivigou-Koumba AM, Laschewsky A, Papadakis CM, Cubitt R, Müller-Buschbaum P (2012) Soft Matter 8:5241–5249

    Article  CAS  Google Scholar 

  59. Zhong Q, Adelsberger J, Niedermeier M, Golosova A, Bivigou-Koumba AM, Laschewsky A, Funari SS, Papadakis CM, Müller-Buschbaum P (2013). Colloid Polym Sci 291:1439–1451

    Google Scholar 

  60. Zhong Q (2012) Structure and transition behavior of novel thermoresponsive polymer films. Doctoral thesis. Technische Universität München, München

    Google Scholar 

  61. Miasnikova A (2012) New hydrogel forming thermo-responsive block copolymers of increasing structural complexity. Doctoral thesis. Universität Potsdam, Potsdam

    Google Scholar 

  62. Winnik FM, Davidson AR, Hamer GK, Kitano H (1992) Macromolecules 25:1876–1880

    Article  CAS  Google Scholar 

  63. Kujawa P, Segui F, Shaban S, Diab C, Okada Y, Tanaka F, Winnik FM (2006) Macromolecules 39:341–348

    Article  CAS  Google Scholar 

  64. Koga T, Tanaka F, Motokawa R, Koizumi S, Winnik FM (2008) Macromolecules 41:9413–9422

    Article  CAS  Google Scholar 

  65. Cho EC, Lee J, Cho K (2003) Macromolecules 36:9929–9934

    Article  CAS  Google Scholar 

  66. Aseyev V, Hietala S, Laukkanen A, Nuopponen M, Confortini O, Prez FED, Tenhu H (2005) Polymer 46:7118–7131

    Article  CAS  Google Scholar 

  67. Junk MJN, Li W, Schlüter AD, Wegner G, Spiess HW, Zhang A, Hinderberger D (2011) J Am Chem Soc 133:10832–10838

    Article  CAS  Google Scholar 

  68. Nuopponen M, Kalliomäki K, Laukkanen A, Hietala S, Tenhu H (2008) J Polym Sci, Part A: Polym Chem 46:38–46

    Article  CAS  Google Scholar 

  69. Farago B, Monkenbusch M, Richter D, Huang JS, Fetters LJ, Gast AP (1993) Phys Rev Lett 71:1015–1018

    Article  CAS  Google Scholar 

  70. Kanaya T, Monkenbusch M, Watanabe H, Nagao M, Richter D (2005) J Chem Phys 122:144905–144913

    Article  CAS  Google Scholar 

  71. Harms S, Rätzke K, Faupel F, Egger W, Ravello L, Laschewsky A, Wang W, Müller-Buschbaum P (2010) Macromol Rapid Comm 31:1364–1367

    Article  CAS  Google Scholar 

  72. Wang W, Metwalli E, Perlich J, Troll K, Papadakis CM, Cubitt R, Müller-Buschbaum P (2009) Macromol Rapid Comm 30:114–119

    Article  Google Scholar 

  73. Wang W, Metwalli E, Perlich J, Papadakis CM, Cubitt R, Müller-Buschbaum P (2009) Macromolecules 42:9041–9051

    Article  CAS  Google Scholar 

  74. Zhou S, Wu C (1996) Macromolecules 29:4998–5001

    Article  CAS  Google Scholar 

  75. Müller-Buschbaum P, Stamm M (1998) Macromolecules 31:3686–3692

    Article  Google Scholar 

  76. Müller-Buschbaum P, Gutmann JS, Lorenz C, Schmitt T, Stamm M (1998) Macromolecules 31:9265–9272

    Article  Google Scholar 

  77. Tanaka T, Hocker LO, Benedek GB (1973) J Chem Phys 59:5151–5159

    Article  CAS  Google Scholar 

  78. Landau LD, Lifshitz EM (1986) Theory of elasticity, 3rd edn. Pergamon Press, Oxford

    Google Scholar 

  79. Li Y, Tanaka T (1990) J Chem Phys 92:1365–1371

    Article  CAS  Google Scholar 

  80. Yan Q, Hoffman AS (1995) Polymer 36:887–889

    Article  CAS  Google Scholar 

  81. Kaneko Y, Nakamura S, Sakai K, Aoyagi T, Kikuchi A, Sakurai Y, Okano T (1998) Macromolecules 31:6099–6105

    Article  CAS  Google Scholar 

  82. Kaholek M, Lee W-K, Ahn S-J, Ma H, Caster KC, LaMattina B, Zauscher S (2004) Chem Mater 16:3688–3696

    Article  CAS  Google Scholar 

  83. Yim H, Kent MS, Mendez S, Lopez GP, Satija S, Seo Y (2006) Macromolecules 39:3420–3426

    Article  CAS  Google Scholar 

  84. Tamai Y, Tanaka H, Nakanishi K (1996) Macromolecules 29:6750–6760

    Article  CAS  Google Scholar 

  85. Grinberg VY, Dubovik AS, Kuznetsov DV, Grinberg NV, Grosberg AY, Tanaka T (2000) Macromolecules 33:8685–8692

    Article  CAS  Google Scholar 

  86. Okada Y, Tanaka F (2005) Macromolecules 38:4465–4471

    Article  CAS  Google Scholar 

  87. Kojima H, Tanaka F (2010) Macromolecules 43:5103–5113

    Article  CAS  Google Scholar 

  88. Tanaka F, Koga T, Kojima H, Winnik FM (2011) Chin J Polym Sci 29:13–21

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The results presented are the outcome of combined research activities over a period of 6 years, which crucially depended on the creativity, labor, zeal and enthusiasm of many dedicated post-doctoral, Ph.D. and master students at Potsdam University and at TU München, who are (in alphabetical order) Joseph Adelsberger, C. Adrián Benítez-Montoya, Achille M. Bivigou-Koumba, Charles Darko, Alexander Diethert, Anastasia Golosova, Abhinav Jain, Gunar Kaune, Juliane Kristen, Amit Kulkarni, Andreas Meier-Koll, David Magerl, Ezzeldin Metwalli, Anna Miasnikova, Gabriele De Paoli, Monika Rawolle, Matthias A. Ruderer, Katja Skrabania, Kordelia Troll, Weinan Wang and Qi Zhong. Moreover, using large scale facilities, the approved beamtime and support by the beamline scientists (Peter Busch, Robert Cubitt, Sergio S. Funari, Isabelle Grillo, Olaf Holderer, Jan Perlich, Vitaliy Pipich, Stephan V. Roth) are acknowledged. Financial support was provided by Deutsche Forschungsgemeinschaft (DFG) via the priority program SPP 1259 “Intelligente Hydrogele” (grants LA611/7, MU1487/8 and PA771/4), by Fonds der Chemischen Industrie (FCI), and by German Academic Exchange Service (DAAD). In the priority program, we enjoyed fruitful collaboration with Regine von Klitzing (TU Berlin), Thomas Hellweg (Universität Bielefeld), Walter Richtering (RWTH Aachen), and Norbert Stock (Universität Kiel). Also, we gladly thank our external partners Franz Faupel (Universität Kiel), Eckhard Görnitz, Michael Päch (both Fraunhofer Institute for Applied Polymer Research, Potsdam), Marianne Hanzlik (Technische Universität München), Klaus Rätzke (Universität Kiel), Ralf Röhlsberger, and Kai Schlage (both DESY Hamburg) for their valuable input and support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to André Laschewsky , Peter Müller-Buschbaum or Christine M. Papadakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Laschewsky, A., Müller-Buschbaum, P., Papadakis, C.M. (2013). Thermo-responsive Amphiphilic Di- and Triblock Copolymers Based on Poly(N-isopropylacrylamide) and Poly(methoxy diethylene glycol acrylate): Aggregation and Hydrogel Formation in Bulk Solution and in Thin Films. In: Sadowski, G., Richtering, W. (eds) Intelligent Hydrogels. Progress in Colloid and Polymer Science, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-319-01683-2_2

Download citation

Publish with us

Policies and ethics