Core-Shell Microgels as Nanoreactors

Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 140)

Abstract

Core-shell microgel particles consisting of a solid core and a shell of crosslinked PNIPA network present model systems of high interest. Here we review our recent work on the core-shell microgel particles and their application as nanoreactors for the immobilization of catalytic active metal nanoparticles or enzymes. The catalytic activity of nanoparticles can be modulated both by the volume transition and the change of polarity of the thermosensitive shell of the carrier system. Special emphasis is put on recent work on the kinetic analysis of protein adsorption onto microgel particles, which was complemented with the thermodynamic study done by ITC. All results herein demonstrate that core-shell microgel particles may serve as “active” nanoreactor for catalytically active nanostructures, namely for metal nanoparticles and enzymes.

Keywords

Core-shell microgel Nanoreactor Metal nanoparticles Protein adsorption Catalysis 

References

  1. 1.
    Nayak S, Lyon LA (2005) Angew Chem Int Ed 44:7686–7708Google Scholar
  2. 2.
    Soppimath K, Tan DCW, Yang Y (2005) Adv Mater 17:318–323Google Scholar
  3. 3.
    Hu Z, Chen Y, Wang C, Zheng Y, Li Y (1998) Nature 393:149–152Google Scholar
  4. 4.
    Biffis A, Orlandi N, Corain B (2003) Adv Mater 15:1551–1555Google Scholar
  5. 5.
    Ballauff M, Lu Y (2007) Polymer 48:1815–1823Google Scholar
  6. 6.
    Dusek K, Patterson D (1968) J Polym Sci Part A-2 6:1209–1216Google Scholar
  7. 7.
    Tanaka T (1978) Phys Rev Lett 40:820–823Google Scholar
  8. 8.
    Shibayama M, Tanaka K (1993) Adv Polym Sci 109:1–62Google Scholar
  9. 9.
    Heskins M, Guillet JE (1968) J Macromol Sci Chem 2:1441–1455Google Scholar
  10. 10.
    Das M, Zhang H, Kumacheva E (2006) Annu Rev Mater Res 36:117–142Google Scholar
  11. 11.
    Singh N, Lyon LA (2007) Chem Mater 19:719Google Scholar
  12. 12.
    Zhang J, Xu S, Kumacheva E (2005) Adv Mater 17:2336–2340Google Scholar
  13. 13.
    Lu Y, Ballauff M (2011) Prog Polym Sci 36:767–792Google Scholar
  14. 14.
    Welsch N, Lu Y, Dzubiella J, Ballauff M (2013) Polymer, 54: 2835–2849Google Scholar
  15. 15.
    Pelton RH (1988) J Polym Sci A 26:9–18Google Scholar
  16. 16.
    Keerl M, Pedersen JS, Richtering W (2009) J Am Chem Soc 131:3093–3097Google Scholar
  17. 17.
    Makino K, Yamanoto S, Fujimoto K, Kawaguchi H, Oshima H (1994) J Colloid Interface Sci 166:251Google Scholar
  18. 18.
    Okubo M, Ahmad H (1996) Colloid Polym Sci 274:112Google Scholar
  19. 19.
    Kim JH, Ballauff M (1999) Colloid Polym Sci 277:1210Google Scholar
  20. 20.
    Dingenouts N, Norhausen C, Ballauff M (1998) Macromolecules 31:8912Google Scholar
  21. 21.
    Lu Y, Wittemann A, Ballauff M, Drechsler M (2006) Macromol Rapid Comm 27:1137–1141Google Scholar
  22. 22.
    Stuart MAC, Huck WTS, Genzer J, Müller M, Ober C, StammM, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Nat Mater 9:101–113Google Scholar
  23. 23.
    Debord JD, Lyon LA (2003) Langmuir 19:7662–7664Google Scholar
  24. 24.
    Bhattacharya S, Eckert F, Boyko V, Pich A (2007) Small 3:650–657Google Scholar
  25. 25.
    Pinkrah VT, Snowden MJ, Mitchell JC, Seidel J, Chowdhry BZ, Fern GR (2003) Langmuir 19:585–590Google Scholar
  26. 26.
    Hoffmann M, Siebenbürger M, Harnau L, Hund M, Hanske C, Lu Y, Wagner CS, Drechsler M, Ballauff M (2010) Soft Matter 6:1125Google Scholar
  27. 27.
    Hoffmann M, Lu Y, Schrinner M, Ballauff M, Harnau L (2008) J Phys Chem B 112:14843Google Scholar
  28. 28.
    Chu F, Siebenbürger M, Polzer F, Stolze C, Kaiser J, Hoffmann M, Heptner N, Dzubiella J, Drechsler M, Lu Y, Ballauff M (2012) Macromol Rapid Comm 33:1042Google Scholar
  29. 29.
    Park JG, Forster JD, Dufresne ER (2010) J Am Chem Soc 132:5960Google Scholar
  30. 30.
    Wittemann A, Drechsler M, Talmon Y, Ballauff M (2005) J Am Chem Soc 127:9688Google Scholar
  31. 31.
    Li Z, Kesselman E, Talmon Y, Hillmyer MA, Lodge TP (2004) Science 306:98Google Scholar
  32. 32.
    Crassous JJ, Ballauff M, Drechsler M, Schmidt J, Talmon Y (2006) Langmuir 22:2403–2406Google Scholar
  33. 33.
    Dingenouts N, Seelenmeyer S, Deike I, Rosenfeld S, Ballauff M, Lindner P, Narayanan T (2001) Phys Chem Chem Phys 3:1169–1174Google Scholar
  34. 34.
    Seelenmeyer S, Deike I, Rosenfeldt S, Norhausen C, Dingenouts N, Ballauff M, Narayanan T, Lindner P (2001) J Chem Phys 114:10471Google Scholar
  35. 35.
    Álvarez-Puebla RA, Contreras-Cáceres R, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM (2009) Angew Chem Int Ed 48:138–143Google Scholar
  36. 36.
    Sánchez-Iglesias A, Grzelczak M, Rodríguez-González B, Guardia-Girós P, Pastoriza-Santos I, Pérez-Juste J, Prato M, Liz-Marzán LM (2009) ACS Nano 3:3184–3190Google Scholar
  37. 37.
    Welsch N, Ballauff M, Lu Y (2011) Adv Polym Sci 234:129–163Google Scholar
  38. 38.
    Lu Y, Mei Y, Drechsler M, Ballauff M (2006) Angew Chem Int Ed 45:813–816Google Scholar
  39. 39.
    Karg M, Hellweg T (2009) J Mater Chem 19:8714–8727Google Scholar
  40. 40.
    Lu Y, Wittemann A, Ballauff M (2009) Macromol Rapid Commun 30:806Google Scholar
  41. 41.
    Lu Y, Mei Y, Drechsler M, Ballauff M (2006) J Phys Chem B 110:3930–3937Google Scholar
  42. 42.
    Mei Y, Lu Y, Polzer F, Ballauff M, Drechsler M (2007) Chem Mater 19:1062–1069Google Scholar
  43. 43.
    Lu Y, Proch S, Schrinner M, Drechsler M, Kempe R, Ballauff M (2009) J Mater Chem 19:3955–3961Google Scholar
  44. 44.
    Habas S, Lee H, Radmilovic V, Somorjai GA, Yang P (2007) Nat Mater 6:692–697Google Scholar
  45. 45.
    Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM (2008) Chem Soc Rev 37:1783–1791Google Scholar
  46. 46.
    Ajayan PM (1999) Chem Rev 99:1787Google Scholar
  47. 47.
    Yuan J, Xu Y, Walther A, Bolisetty S, Schumacher M, SchmalzH, Ballauff M, Müller AHE (2008) Nat Mater 7:718–722Google Scholar
  48. 48.
    El-Sayed M (2001) Acc Chem Res 34:257–264Google Scholar
  49. 49.
    Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Coord Chem Rev 249:1870–1901Google Scholar
  50. 50.
    Lu Y, Yuan J, Polzer F, Drechsler M, Preussner J (2010) ACS Nano 4:7078–7086Google Scholar
  51. 51.
    Zhang Q, Lee I, Ge J, Zaera F, Yin Y (2010) Adv Funct Mater 20:2201–2214Google Scholar
  52. 52.
    Arnal P, Comotti M, Schüth F (2006) Angew Chem Int Ed 45:8224–8227Google Scholar
  53. 53.
    Lee I, Albiter MA, Zhang Q, Ge J, Yin Y, Zaera F (2011) Phys Chem Chem Phys 13:2449–2456Google Scholar
  54. 54.
    Pelton R (2010) J Colloid Interface Sci 348:673–674Google Scholar
  55. 55.
    Wu S, Dzubiella J, Kaiser J, Drechsler M, Guo X, Ballauff M, LuY (2012) Angew Chem Int Ed 51:2229Google Scholar
  56. 56.
    Karg M, Pastoriza-Santos I, Liz-Marzán LM, Hellweg T (2006) Chem Phys Chem 7:2298–2301Google Scholar
  57. 57.
    Wu S, Kaiser J, Drechsler M, Ballauff M, Lu Y (2013) Colloid Polym Sci 291:231–237Google Scholar
  58. 58.
    Contreras-Cácares R, Sánchez-Iglesias A, Karg M, Pastoriza- Santos I, Pérez- Juste J, Pacifico J, Hellweg T, Fernández-BarberoA, Liz-Marzán LM (2008) Adv Mater 20:1666Google Scholar
  59. 59.
    Astruc D (2008) Nanoparticles and catalysis. WILEY-VCH Verlag GmbH & Co. KGa, WeinheimGoogle Scholar
  60. 60.
    Wunder S, Polzer F, Lu Y, Mei Y, Ballauff M (2010) J Phys Chem C 114:8814–8820Google Scholar
  61. 61.
    Wunder S, Lu Y, Albrecht M, Ballauff M (2011) ACS Catal 1:908–916Google Scholar
  62. 62.
    Carregal-Romero S, Pérez-Juste J, Hervés P, Liz-Marzán LM, Mulvaney P (2010) Langmuir 26:1271–1277Google Scholar
  63. 63.
    Schrinner M, Proch S, Mei Y, Kempe R, Miyajima N, Ballauff M (2008) Adv Mater 20:1928–1933Google Scholar
  64. 64.
    Yuan C, Luo W, Zhong L, Deng H, Liu J, Xu Y, Dai L (2011) Angew Chem Int Ed 50:3515–3520Google Scholar
  65. 65.
    Hervés P, Pérez-Lorenzo M, Liz-Marzán LM, Dzubiella J, Lu Y, Ballauff M (2012) Chem Soc Rev 41:5577–5587Google Scholar
  66. 66.
    Debye P (1942) Trans Electrochem Soc 82:265–273Google Scholar
  67. 67.
    Smith MH, Lyon LA (2012) Acc Chem Res 45:985–993Google Scholar
  68. 68.
    Raemdonck K, Demeester J, De Smedt S (2009) Soft Matter 5:707–715Google Scholar
  69. 69.
    Deka SR, Quarta A, Di Corato R, Riedinger A, Cingolani R, Pellegrino T (2011) Nanoscale 3:619–629Google Scholar
  70. 70.
    Murthy N, Xu M, Schuck S, Kunisawa J, Shastri N, Frechet JM (2003) Proc Natl Acad Sci U S A 100:4995–5000Google Scholar
  71. 71.
    Huang X, Yin YZ, Tang Y, Bai XL, Zhang ZM, Xu JY, Liu JQ, Shen JC (2009) Soft Matter 5:1905–1911Google Scholar
  72. 72.
    Gawlitza K, Wu C, Georgieva R, Wang D, Ansorge-Schumacher MB, von Klitzing R (2012) Phys Chem Chem Phys 14(27):9594–9600Google Scholar
  73. 73.
    Jia X, Kiick KL (2009) Macromol Biosci 9:140–156Google Scholar
  74. 74.
    Seliktar D (2012) Science 336:1124–1128Google Scholar
  75. 75.
    Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S (2011) Chem Rev 111:5610–5637Google Scholar
  76. 76.
    Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V (2010) ACS Nano 4:3623–3632Google Scholar
  77. 77.
    Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli FB, Dawson KA (2011) J Am Chem Soc 133:2525–2534Google Scholar
  78. 78.
    Deng ZJ, Liang MT, Monteiro M, Toth I, Minchin RF (2011) Nat Nanotechnol 6:39–44Google Scholar
  79. 79.
    Linse S, Cabaleiro-Lago C, Xue WF, Lynch I, Lindman S, Thulin E, Radford SE, Dawson KA (2007) Proc Natl Acad Sci U S A 104:8691–8696Google Scholar
  80. 80.
    Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Adv Drug Deliver Rev 61:428–437Google Scholar
  81. 81.
    You CC, Agasti SS, De M, Knapp MJ, Rotello VM (2006) J Am Chem Soc 128:14612–14618Google Scholar
  82. 82.
    Shang W, Nuffer JH, Muñiz-Papandrea VA, Colón W, Siegel RW, Dordick JS (2009) Small 5:470–476Google Scholar
  83. 83.
    Baier G, Costa C, Zeller A, Baumann D, Sayer C, Araujo PHH, Mailander V, Musyanovych A, Landfester K (2011) Macromol Biosci 11:628–638Google Scholar
  84. 84.
    Kumar S, Aswal VK, Kohlbrecher J (2011) Langmuir 27:10167–10173Google Scholar
  85. 85.
    Koutsopoulos S, Patzsch K, Bosker WTE, Norde W (2007) Langmuir 23:2000–2006Google Scholar
  86. 86.
    Lundqvist M, Stigler J, Cedervall T, Berggård T, Flanagan MB, Lynch I, Elia G, Dawson K (2011) ACS Nano 5(9):7503–7509Google Scholar
  87. 87.
    De M, You CC, Srivastava S, Rotello VM (2007) J Am Chem Soc 129:10747–10753Google Scholar
  88. 88.
    Dobrovolskaia MA, Patri AK, Zheng J, Clogston JD, Ayub N, Aggarwal P, Neun BW, Hall JB, McNeil SE (2009) Nanomed-Nanotechnol 5:106–117Google Scholar
  89. 89.
    Xia XR, Monteiro-Riviere NA, Riviere JE (2010) Nat Nanotechnol 5:671–675Google Scholar
  90. 90.
    van der Veen M, Stuart MC, Norde W (2007) Colloids Surf B Biointerfaces 54:136–142Google Scholar
  91. 91.
    Herrwerth S, Eck W, Reinhardt S, Grunze M (2003) J Am Chem Soc 125:9359–9366Google Scholar
  92. 92.
    Wittemann A, Haupt B, Ballauff M (2003) Phys Chem Chem Phys 5:1671–1677Google Scholar
  93. 93.
    Anikin K, Rocker C, Wittemann A, Wiedenmann J, Ballauff M, Nienhaus GU (2005) J Phys Chem B 109(12):5418–5420Google Scholar
  94. 94.
    Henzler K, Haupt B, Lauterbach K, Wittemann A, Borisov O, Ballauff M (2010) J Am Chem Soc 132:3159–3163Google Scholar
  95. 95.
    Henzler K, Rosenfeldt S, Wittemann A, Harnau L, Finet S, Narayanan T, Ballauff M (2008) Phys Rev Lett 100:158301Google Scholar
  96. 96.
    Henzler K, Haupt B, Rosenfeldt S, Harnau L, Narayanan T, Ballauff M (2011) Phys Chem Chem Phys 13:17599–17605Google Scholar
  97. 97.
    Smith MH, Lyon LA (2011) Macromolecules 44:8154–8160Google Scholar
  98. 98.
    Li Y, de Vries R, Kleijn M, Slaghek T, Timmermans J, Stuart MC, Norde W (2010) Biomacromolecules 11:1754–1762Google Scholar
  99. 99.
    Li YA, Kleijn JM, Stuart MAC, Slaghek T, Timmermans J, Norde W (2011) Soft Matter 7:1926–1935Google Scholar
  100. 100.
    Li Y, Zhang Z, van Leeuwen HP, Cohen Stuart MA, Norde W, Kleijn JM (2011) Soft Matter 7:10377–10385Google Scholar
  101. 101.
    Li Y, Norde W, Kleijn JM (2012) Langmuir 28:1545–1551Google Scholar
  102. 102.
    Malmsten M, Bysell H, Hansson P (2010) Curr Opin Colloid Interface Sci 15:435–444Google Scholar
  103. 103.
    Johansson C, Hansson P, Malmsten M (2009) J Phys Chem B 113:6183–6193Google Scholar
  104. 104.
    Johansson C, Hansson P, Malmsten M (2007) J Colloid Interface Sci 316:350–359Google Scholar
  105. 105.
    Bysell H, Månsson R, Hansson P, Malmsten M (2011) Adv Drug Deliver Rev 63:1172–1185Google Scholar
  106. 106.
    Hoshino Y, Koide H, Furuya K, Haberaecker WW, Lee SH, Kodama T, Kanazawa H, Oku N, Shea KJ (2012) Proc Natl Acad Sci U S A 109:33–38Google Scholar
  107. 107.
    Kawaguchi H, Fujimoto K, Mizuhara Y (1992) Colloid Polym Sci 270:53–57Google Scholar
  108. 108.
    Shamim N, Liang H, Hidajat K, Uddin MS (2008) J Colloid Interface Sci 320:15–21Google Scholar
  109. 109.
    Halperin A, Kroger M (2011) Macromolecules 44:6986–7005Google Scholar
  110. 110.
    Cole MA, Voelcker NH, Thissen H, Horn RG, Griesser HJ (2010) Soft Matter 6:2657–2667Google Scholar
  111. 111.
    Cole MA, Jasieniak M, Thissen H, Voelcker NH, Griesser HJ (2009) Anal Chem 81:6905–6912Google Scholar
  112. 112.
    Lindman S, Lynch I, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Nano Lett 7:914–920Google Scholar
  113. 113.
    Grabstain V, Bianco-Peled H (2003) Biotechnol Prog 19:1728–1733Google Scholar
  114. 114.
    Welsch N, Wittemann A, Ballauff M (2009) J Phys Chem B 113:16039–16045Google Scholar
  115. 115.
    Bysell H, Hansson P, Malmsten M (2010) J Phys Chem B 114:7207–7215Google Scholar
  116. 116.
    Bysell H, Ransson P, Schmidtchen A, Malmsten M (2010) J Phys Chem B 114:1307–1313Google Scholar
  117. 117.
    Becker AL, Welsch N, Schneider C, Ballauff M (2011) Biomacromolecules 12:3936–3944Google Scholar
  118. 118.
    Welsch N, Becker AL, Dzubiella J, Ballauff M (2012) Soft Matter 8:1428–1436Google Scholar
  119. 119.
    Yigit C, Welsch N, Ballauff M, Dzubiella J (2012) Langmuir 28:14373–14385Google Scholar
  120. 120.
    Wittemann A, Ballauff M (2004) Anal Chem 76:2813–2819Google Scholar
  121. 121.
    Jackler G, Wittemann A, Ballauff M, Czeslik C (2004) Spectroscopy 18:289–299Google Scholar
  122. 122.
    Henzler K, Wittemann A, Breininger E, Ballauff M, Rosenfeldt S (2007) Biomacromolecules 8:3674–3681Google Scholar
  123. 123.
    Dousseau F, Pezolet M (1990) Biochemistry 29:8771–8779Google Scholar
  124. 124.
    Rocker C, Potzl M, Zhang F, Parak WJ, Nienhaus GU (2009) Nat Nanotechnol 4:577–580Google Scholar
  125. 125.
    Dell’Orco D, Lundqvist M, Oslakovic C, Cedervall T, Linse S (2010) PLoS One 5:e10949Google Scholar
  126. 126.
    Welsch N, Dzubiella J, Graebert A, Ballauff M (2012) Soft Matter 8:12043–12052Google Scholar
  127. 127.
    Azizian S (2004) J Colloid Interface Sci 276:47–52Google Scholar
  128. 128.
    Jackson MB (2006) Molecular and cellular biophysics. Cambridge University Press, New YorkGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und EnergieBerlinGermany
  2. 2.Helmholtz Virtual Institute − Multifunctional Materials in MedicineBerlin, TeltowGermany
  3. 3.Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations