Construction of Sequential Classifier Based on MacArthur’s Overlapping Niches Model

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 233)

Summary

This paper presents the problem of building the sequential model of the classification task. In our approach the structure of the model is built in the learning phase of classification. In this paper a split criterion based on the MacArthur’s overlapping niches model is proposed. The MacArthur’s overlapping niches distribution is created for each row of the confusion matrix. The split criterion is associated with the analysis of the received distributions. The obtained results were verified on ten data sets. Nine data sets come from UCI repository and one is a real-life data set.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burduk, R.: Classification error in Bayes multistage recognition task with fuzzy observations. Pattern Analysis and Applications 13(1), 85–91 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Kolakowska, A., Malina, W.: Fisher Sequential Classifiers. IEEE Transaction on Systems, Man, and Cybernecics – Part B Cybernecics 35(5), 988–998 (2005)CrossRefGoogle Scholar
  3. 3.
    Podolak, I.T.: Hierarchical classifier with overlapping class groups. Expert Syst. Appl. 34(1), 673–682 (2008)CrossRefGoogle Scholar
  4. 4.
    Kurzyński, M.: Decision Rules for a Hierarchical Classifier. Pat. Rec. Let. 1, 305–310 (1983)MATHCrossRefGoogle Scholar
  5. 5.
    Wozniak, M.: A hybrid decision tree training method using data streams. Knowledge and Information Systems 29(2), 335–347 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Choras, M.: Image feature extraction methods for ear biometrics–A survey. In: 6th International Conference on Computer Information Systems and Industrial Management Applications, CISIM 2007, pp. 61–265. IEEE (2007)Google Scholar
  7. 7.
    Choraś, R.S.: Content-based retrieval using color, texture, and shape information. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS, vol. 2905, pp. 619–626. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. The Journal of Machine Learning Research 3, 1157–1182 (2003)MATHGoogle Scholar
  9. 9.
    Rejer, I.: Genetic Algorithms in EEG Feature Selection for the Classification of Movements of the Left and Right Hand. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds.) CORES 2013. AISC, vol. 226, pp. 579–589. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Penar, W., Woźniak, M.: Experiments on classifiers obtained via decision tree induction methods with different attribute acquisition cost limit. In: Kurzynski, M., Puchala, E., Wozniak, M., Zolnierek, A. (eds.) Computer Recognition Systems 2. ASC, vol. 45, pp. 371–377. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Manwani, N., Sastry, P.S.: Geometric decision tree. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 42(1), 181–192 (2012)CrossRefGoogle Scholar
  12. 12.
    MacArthur, R.: On the relative abundance of bird species. Proc. Natl. Acad. Sci. USA 43, 293–295 (1957)CrossRefGoogle Scholar
  13. 13.
    Jin-Tun, Z.: Species Abundance Patterns in Some Broad-leaved Deciduous Forests in New York, USA. Chinese Journal of Plant Ecology 23(6), 481–489 (1999)Google Scholar
  14. 14.
    MacArthur, R.: Niche Overlap as a Function of Environmental Variability. Proc. Natl. Acad. Sci. USA 43, 293–295 (1972)CrossRefGoogle Scholar
  15. 15.
    Kurzyński, M.: On the Multistage Bayes Classifier. Pattern Recognition 21, 355–365 (1988)MATHCrossRefGoogle Scholar
  16. 16.
    Berger, J.: Statistical Decision Theory and Bayesian Analysis. Springer, New York (1993)Google Scholar
  17. 17.
    Asuncion, A., Newman, D.J.: UCI machine learning repository (2007)Google Scholar
  18. 18.
    Burduk, R., Woźniak, M.: Different decision tree induction strategies for a medical decision problem. Central European Journal of Medicine 7(2), 183–193 (2012)CrossRefGoogle Scholar
  19. 19.
    Kurzyński, M.: Diagnosis of acute abdominal pain using three-stage classifier. Computers in Biology and Medicine 17(1), 19–27 (1987)CrossRefGoogle Scholar
  20. 20.
    Trawiński, B., Smetek, M., Telec, Z., Lasota, T.: Nonparametric statistical analysis for multiple comparison of machine learning regression algorithms. International Journal of Applied Mathematics and Computer Science 22(4), 867–881Google Scholar
  21. 21.
    Motomura, I.: A statisticaltreatmen of associations. Jpn. J. Zool. 44, 379–383 (1932) (in Japanese)Google Scholar
  22. 22.
    Mutsunori, T.: Apportionment or Random Assortment: Species Abundance Patterns Revisited. Journal of Animal Ecology 59(3), 1129–1146 (1990)CrossRefGoogle Scholar
  23. 23.
    Bobrowski, L., Topczewska, M.: Separable Linearization of Learning Sets by Ranked Layer of Radial Binary Classifiers. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds.) CORES 2013. AISC, vol. 226, pp. 131–140. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Systems and Computer NetworksWroclaw University of TechnologyWroclawPoland

Personalised recommendations