Skip to main content

Image Feature Extraction Using Compressive Sensing

  • Conference paper
Image Processing and Communications Challenges 5

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 233))

Summary

In this paper a new approach for image feature extraction is presented. We used the Compressive Sensing (CS) concept to generate the measurement matrix. The new measurement matrix is different from the measurement matrices in literature as it was constructed using both zero mean and nonzero mean rows. The image is simply projected into a new space using the measurement matrix to obtain the feature vector. Another proposed measurement matrix is a random matrix constructed from binary entries. Face recognition problem was used as an example for testing the feature extraction capability of the proposed matrices. Experiments were carried out using two well-known face databases, namely, ORL and FERET databases. System performance is very promising and comparable with the classical baseline feature extraction algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chellappa, R., Wilson, C.L., Sirohey, S.: Human and machine recognition of faces: a survey. Proceedings of the IEEE 83(5), 705–741 (1995)

    Article  Google Scholar 

  2. Sirovich, L., Kirby, M.: Low-dimensional procedure for the characterization of human faces. Journal of the Optical Society of America A 4(3), 519–524 (1987)

    Article  Google Scholar 

  3. Kirby, M., Sirovich, L.: Application of the Karhunen-Loeve procedure for the characterization of human faces. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(1), 103–108 (1990)

    Article  Google Scholar 

  4. Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3, 0898-929X, 71–86 (1991)

    Google Scholar 

  5. Pentland, A., Moghaddam, B., Starner, T.: Viewbased and modular eigenspaces for face recognition. In: Proceedings of Computer Vision and Pattern Recognition, pp. 84–91 (1994)

    Google Scholar 

  6. Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)

    Article  Google Scholar 

  7. Zhao, W., Chellappa, R., Nandhakumarm, N.: Empirical performance analysis of linear discriminant classfiers. In: Proceedings of Computer Vision and Pattern Recognition, pp. 164–169 (1998)

    Google Scholar 

  8. Shen, L., Bai, L.: A review on Gabor wavelets for face recognition. Pattern Analysis and Applications 9(2), 273–292 (2006)

    Article  MathSciNet  Google Scholar 

  9. Eleyan, A., Ozkaramanli, H., Demirel, H.: Complex wavelet transform-based face recognition. EURASIP Journal on Advances in Signal Processing, Article ID 185281, 13 pages (2008)

    Google Scholar 

  10. Hafed, Z.M., Levine, M.D.: Face recognition using the discrete cosine transform. International Journal of Computer Vision 43(3), 167–188 (2001)

    Article  MATH  Google Scholar 

  11. Wiskott, L., Fellous, J., Kruger, N., Malsburg, V.: Face recognition by elastic brunch graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 775–779 (1997)

    Article  Google Scholar 

  12. Brunelli, R., Poggio, T.: Face recognition: features versus templates. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(10), 1042–1052 (1993)

    Article  Google Scholar 

  13. Eleyan, A., Kose, K., Cetin, A.E.: New face representation using compressive sensing. In: IEEE Conference on Signal Processing and Communications Applications, pp. 558–561 (2011)

    Google Scholar 

  14. Liu, L., Fieguth, P., Kuang, G.: Compressed sensing for robust texture classification. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part I. LNCS, vol. 6492, pp. 383–396. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Shannon, C.E.: Communication in the presence of noise. In: Proceedings of Institute of Radio Engineers, vol. 37(1), pp. 10–21 (1949)

    Google Scholar 

  16. Baraniuk, R.G.: Compressed sensing (Lecture Notes). IEEE Signal Processing Magazine 24(4), 118–124 (2007)

    Article  Google Scholar 

  17. Candes, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Candes, E.: Compressive sampling. International Congress of Mathematics 3, 1433–1452 (2006)

    MathSciNet  Google Scholar 

  19. Candes, E., Tao, T.: Near optimal signal recovery from random projections: Universal encoding strategies. IEEE Transactions on Information Theory 52(12), 5406–5425 (2006)

    Article  MathSciNet  Google Scholar 

  20. Donoho, D.: Compressed sensing. IEEE Transactions on Information Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  21. Philipps, P.J., Moon, H., Rivzi, S., Ross, P.: The Feret evaluation methodology for face-recognition algorithms. IEEE Transaction on Pattern Analysis and Machine Intelligence 22(10), 1090–1100 (2000)

    Article  Google Scholar 

  22. Samaria, F., Harter, A.: Parameterization of a stochastic model for human face identification. In: Proceedings of the 2nd IEEE Workshop on Applications of Computer Vision, pp. 138–142 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa Eleyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Eleyan, A., Kose, K., Cetin, A.E. (2014). Image Feature Extraction Using Compressive Sensing. In: S. Choras, R. (eds) Image Processing and Communications Challenges 5. Advances in Intelligent Systems and Computing, vol 233. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-01622-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01622-1_21

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-01621-4

  • Online ISBN: 978-3-319-01622-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics