Advertisement

Chorea

  • Abdul Qayyum Rana
  • Peter Hedera
Chapter

Abstract

Chorea is characterized by involuntary, brief, unpredictable, and random hyperkinetic movements. This chapter reviews main clinical characteristics of chorea and similar hyperkinetic movements and their most common causes. We describe characteristic phenotypic features of chorea-causing conditions, their differential diagnosis, and most useful clinical work-up, including genetic testing. We also discuss most typical clinical presentation of the most common types of chorea, especially Huntington’s disease with its motor and non-motor symptoms and signs, and main therapeutic options. Additional emphasis is on treatable causes of chorea, such as Sydenham chorea and Wilson’s disease.

Keywords

Chorea Huntington’s disease Therapy Hyperkinetic movements Tetrabenazine 

Bibliography

  1. Asherson RA, Cervera R. Unusual manifestations of the antiphospholipid syndrome. Clin Rev Allergy Immunol. 2003;25:61–78.PubMedCrossRefGoogle Scholar
  2. Bader B, Vollmar C, Ackl N, Ebert A, la Fougère C, Noachtar S, Danek A. Bilateral temporal lobe epilepsy confirmed with intracranial EEG in chorea-acanthocytosis. Seizure. 2011;20:340–2.PubMedCrossRefGoogle Scholar
  3. Baizabal-Carvallo JF, Alonso-Juarez M, Koslowski M. Chorea in systemic lupus erythematosus. J Clin Rheumatol. 2011;17:69–72.PubMedCrossRefGoogle Scholar
  4. Breedveld GJ, Percy AK, MacDonald ME, et al. Clinical and genetic heterogeneity in benign hereditary chorea. Neurology. 2002;59:579–84.PubMedCrossRefGoogle Scholar
  5. Brilot F, Merheb V, Ding A, Murphy T, Dale RC. Antibody binding to neuronal surface in Sydenham chorea, but not in PANDAS or Tourette syndrome. Neurology. 2011;76:1508–13.PubMedCrossRefGoogle Scholar
  6. Cardoso F. Chorea gravidarum. Arch Neurol. 2002;59:868–70.PubMedCrossRefGoogle Scholar
  7. Cardoso F. Sydenham’s chorea. Handb Clin Neurol. 2011;100:221–9.PubMedCrossRefGoogle Scholar
  8. Cardoso F, Maia D, Cunningham MC, Valenca G. Treatment of Sydenham chorea with corticosteroids. Mov Disord. 2003;18:1374–7.PubMedCrossRefGoogle Scholar
  9. Carroll E, Sanchez-Ramos J. Hyperkinetic movement disorders associated with HIV and other viral infections. Handb Clin Neurol. 2011;100:323–34.PubMedCrossRefGoogle Scholar
  10. Cortese I, Chaudhry V, So YT, Cantor F, Cornblath DR, Rae-Grant A. Evidence-based guideline update: plasmapheresis in neurologic disorders: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2011;76:294–300.PubMedCrossRefGoogle Scholar
  11. Cummins A, Eggert J, Pruitt R, Collins JS. Huntington disease: implications for practice. Nurse Pract. 2011;36:41–7.PubMedCrossRefGoogle Scholar
  12. Dale RC, Yin K, Ding A, et al. Antibody binding to neuronal surface in movement disorders associated with lupus and antiphospholipid antibodies. Dev Med Child Neurol. 2011;53:522–8.PubMedCrossRefGoogle Scholar
  13. de Tommaso M, Serpino C, Sciruicchio V. Management of Huntington’s disease: role of tetrabenazine. Ther Clin Risk Manag. 2011;7:123–9.PubMedCrossRefGoogle Scholar
  14. Docherty MJ, Burn DJ. Hyperthyroid chorea. Handb Clin Neurol. 2011;100:279–86.PubMedCrossRefGoogle Scholar
  15. Eidelberg D, Surmeier DJ. Brain networks in Huntington disease. J Clin Invest. 2011;121:484–92.PubMedCrossRefGoogle Scholar
  16. Em JJ, Chang MK. Hemiballism-hemichorea and non-ketotic hyperglycaemia. J Neurol Neurosurg Psychiatry. 1994;57:748–50.CrossRefGoogle Scholar
  17. Goetz CG, Pappert EJ. Textbook of clinical neurology. 2nd ed. Philadelphia: Saunders; 1999.Google Scholar
  18. Hagiwara K, Tominaga K, Okada Y, et al. Post-streptococcal chorea in an adult with bilateral striatal encephalitis. J Clin Neurosci. 2011;18:708–9.PubMedCrossRefGoogle Scholar
  19. Ikeuchi T, Koide R, Onodera O, et al. Dentatorubral – pallidoluysian atrophy (DRPLA): molecular basis for wide clinical features of DRPLA. Clin Neurosci. 1995;3:23–7.PubMedGoogle Scholar
  20. Illarioshkin SN, Igarashi S, Onodera O, et al. Trinucleotide repeat length and rate of progression of Huntington’s disease. Ann Neurol. 1994;36:630–5.PubMedCrossRefGoogle Scholar
  21. Inzelberg R, Weinberger M, Gak E. Benign hereditary chorea: an update. Parkinsonism Relat Disord. 2011;17:301–7.PubMedCrossRefGoogle Scholar
  22. Ishaq S, Khalil S, Khan A, Khalid U. Chorea as an unusual presenting feature of anti-phospholipid syndrome. J Pak Med Assoc. 2010;60:975–6.PubMedGoogle Scholar
  23. Jankovic J, Tolosa E. Parkinson’s disease and movement disorder. 5th ed. Philadelphia: Lippincott Williams and Wilkins; 2007.Google Scholar
  24. Johri A, Chaturvedi RK, Beal MF. Hugging tight in Huntington’s. Nat Med. 2011;17:245–6.PubMedCrossRefGoogle Scholar
  25. Kimber TE, Thompson PD. Senile chorea. Handb Clin Neurol. 2011;100:213–7.PubMedCrossRefGoogle Scholar
  26. Kleiner-Fisman G. Benign hereditary chorea. Handb Clin Neurol. 2011;100:199–212.PubMedCrossRefGoogle Scholar
  27. Klempíř J, Zidovská J, Stochl J, Ing VK, Uhrová T, Roth J. The number of CAG repeats within the normal allele does not influence the age of onset in Huntington’s disease. Mov Disord. 2011;26:125–9.PubMedCrossRefGoogle Scholar
  28. Kobayashi K, Aoyama N, Sasaki J, et al. MRI appearance of a cerebral cavernous malformation in the caudate nucleus before and after chorea onset. J Clin Neurosci. 2011;18:719–21.PubMedCrossRefGoogle Scholar
  29. Kremer HP. Imaging Huntington’s disease (HD) brains – imagine HD trails. Neurol Neurosurg Psychiatry. 2005;76:620.CrossRefGoogle Scholar
  30. Kremer B, Goldberg P, Andrew SE, et al. A worldwide study of the Huntington’s disease mutation. The sensitivity and specificity of measuring CAG repeats. N Engl J Med. 1994;330:1401–6.PubMedCrossRefGoogle Scholar
  31. Kuehn BM. Imaging helps to identify early changes associated with Huntington disease. JAMA. 2011;305:138.PubMedCrossRefGoogle Scholar
  32. Le Ber I, Camuzat A, Castelnova G, et al. Prevalence of dentatorubral pallidoluysian atrophy in a large series of white patients with cerebellar ataxia. Arch Neurol. 2003;60:1097–9.PubMedCrossRefGoogle Scholar
  33. Leung JG, Breden EL. Tetrabenazine for the treatment of tardive dyskinesia. Ann Pharmacother. 2011;45:525–31.PubMedCrossRefGoogle Scholar
  34. Lewin AB, Storch EA, Murphy TK. Pediatric autoimmune neuropsychiatric disorders associated with Streptococcus in identical siblings. J Child Adolesc Psychopharmacol. 2011;21:177–82.PubMedCrossRefGoogle Scholar
  35. Marder K, Zhao H, Myers RH, et al. Rate of functional decline in Huntington’s disease. Neurology. 2000;54:452–8.PubMedCrossRefGoogle Scholar
  36. Margolis RL, Homes SE, Rosenblatt A, et al. Huntington’s disease like 2 (HDL2) in North America and Japan. Ann Neurol. 2004;56:670–4.PubMedCrossRefGoogle Scholar
  37. Marshall FJ. A randomized, double blind placebo-controlled study of tetrabenazine in patients with Huntington’s disease. Mov Disord. 2004;19:1122.Google Scholar
  38. Marvi MM, Lew MF. Polycythemia and chorea. Handb Clin Neurol. 2011;100:271–6.PubMedCrossRefGoogle Scholar
  39. Miyasaki JM. Chorea caused by toxins. Handb Clin Neurol. 2011;100:335–46.PubMedCrossRefGoogle Scholar
  40. Mochel F, Haller RG. Energy deficit in Huntington disease: why it matters. J Clin Invest. 2011;121:493–9.PubMedCrossRefGoogle Scholar
  41. Ondo WG. Hyperglycemic nonketotic states and other metabolic imbalances. Handb Clin Neurol. 2011;100:287–91.PubMedCrossRefGoogle Scholar
  42. Paulsen JS, Ready RE, Hamilton JM, Mega MS, Cummings JL. Neuropsychiatric aspects of Huntington’s disease. J Neurol Neurosurg Psychiatry. 2001;71:310–4.PubMedCrossRefGoogle Scholar
  43. Paulsen JS, Hoth KF, Nehl C, Stierman L. Critical periods of suicide risk in Huntington’s disease. Am J Psychiatry. 2005;162:725–31.PubMedCrossRefGoogle Scholar
  44. Perlman SL. Spinocerebellar degenerations. Handb Clin Neurol. 2011;100:113–40.PubMedCrossRefGoogle Scholar
  45. Piccolo I, Defanti CA, Soliveri P, et al. Cause and course in a series of patients with sporadic chorea. J Neurol. 2003;250:429–35.PubMedCrossRefGoogle Scholar
  46. Przekop A, Sanger TD. Birth-related syndromes of athetosis and kernicterus. Handb Clin Neurol. 2011;100:387–95.PubMedCrossRefGoogle Scholar
  47. Przekop A, McClure C, Ashwal S. Postoperative encephalopathy with choreoathetosis. Handb Clin Neurol. 2011;100:295–305.PubMedCrossRefGoogle Scholar
  48. Ray LW, Koller WC. Movement disorders, neurologic principles and practice. 2nd ed. New York: McGraw-Hill; 1997.Google Scholar
  49. Reglodi D, Kiss P, Lubics A, Tamas A. Review on the protective effects of PACAP in models of neurodegenerative diseases in vitro and in vivo. Curr Pharm Des. 2011;17:962–72.PubMedCrossRefGoogle Scholar
  50. Robottom BJ, Weiner WJ. Chorea gravidarum. Handb Clin Neurol. 2011;100:231–5.PubMedCrossRefGoogle Scholar
  51. Rolands LP, editor. Merritt’s textbook of neurology. 10th ed. New York: Lippincott Williams & Wilkins; 2000.Google Scholar
  52. Rozas JL, Gómez-Sánchez L, Tomás-Zapico C, Lucas JJ, Fernández-Chacón R. Increased neurotransmitter release at the neuromuscular junction in a mouse model of polyglutamine disease. J Neurosci. 2011;31:1106–13.PubMedCrossRefGoogle Scholar
  53. Sadeghian H, O'Suilleabhain PE, Battiste J, Elliott JL, Trivedi JR. Huntington chorea presenting with motor neuron disease. Arch Neurol. 2011;68:650–2.PubMedCrossRefGoogle Scholar
  54. Sah DW, Aronin N. Oligonucleotide therapeutic approaches for Huntington disease. J Clin Invest. 2011;121:500–7.PubMedCrossRefGoogle Scholar
  55. Schneider SA, Bhatia KP. Huntington’s disease look-alikes. Handb Clin Neurol. 2011;100:101–12.PubMedCrossRefGoogle Scholar
  56. Shirendeb U, Reddy AP, Manczak M, et al. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington’s disease: implications for selective neuronal damage. Hum Mol Genet. 2011;20:1438–55.PubMedCrossRefGoogle Scholar
  57. Stemper B, Thurauf N, Neundorfer B, Heckmann JG. Choreoathetosis related to lithium intoxication. Eur J Neurol. 2003;10:743–4.PubMedCrossRefGoogle Scholar
  58. Stevanin G, Fujigasaki H, Lebre AS, et al. Huntington’s disease like phenotype due to trinucleotide repeat expansions in the TBP and JPH3 genes. Brain. 2003;126:1599–603.PubMedCrossRefGoogle Scholar
  59. Tani LY, Veasy LG, Minich LL, Shaddy RE. Rheumatic fever in children younger than 5 years; is the presentation different? Pediatrics. 2003;112:1065–8.PubMedCrossRefGoogle Scholar
  60. Thobois S, Bozio A, Ninet J, Akhavi A, Broussolle E. Chorea after cardiopulmonary bypass. Eur Neurol. 2004;51:46–7.PubMedCrossRefGoogle Scholar
  61. Walker HK. An overview of the nervous system. In: Walker HK, Hall WD, Hurst JW, editors. Clinical methods: the history, physical, and laboratory examinations. 3rd ed. Boston: Butterworths; 1990a. Chapter 50.Google Scholar
  62. Walker HK. Involuntary movements. In: Walker HK, Hall WD, Hurst JW, editors. Clinical methods: the history, physical, and laboratory examinations. 3rd ed. Boston: Butterworths; 1990b. Chapter 70.Google Scholar
  63. Walker RH, Rasmussen A, Rudnicki D, et al. Huntington’s disease like 2 can present as chorea acanthocytosis. Neurology. 2003;61:1002–4.PubMedCrossRefGoogle Scholar
  64. Walker RH, Jung HH, Danek A. Neuroacanthocytosis. Handb Clin Neurol. 2011;100:141–51.PubMedCrossRefGoogle Scholar
  65. Walterfang M, Evans A, Looi JC, et al. The neuropsychiatry of neuroacanthocytosis syndromes. Neurosci Biobehav Rev. 2011a;35:1275–83.PubMedCrossRefGoogle Scholar
  66. Walterfang M, Looi JC, Styner M, et al. Shape alterations in the striatum in chorea-acanthocytosis. Psychiatry Res. 2011b;192:29–36.PubMedCrossRefGoogle Scholar
  67. Zesiewicz TA, Sullivan KL. Drug-induced hyperkinetic movement disorders by nonneuroleptic agents. Handb Clin Neurol. 2011;100:347–63.PubMedCrossRefGoogle Scholar
  68. Zijlmans JC. Vascular chorea in adults and children. Handb Clin Neurol. 2011;100:261–70.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Abdul Qayyum Rana
    • 1
  • Peter Hedera
    • 2
  1. 1.Parkinson’s Clinic of Eastern TorontoTorontoCanada
  2. 2.Department of Neurology Division of Movement DisordersVanderbilt UniversityNashvilleUSA

Personalised recommendations