Skip to main content

High Order Space-Time Discretization for Elastic Wave Propagation Problems

  • Conference paper
  • First Online:
Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM 2012

Abstract

In this work we consider the numerical solution of elastic wave propagation problems in heterogeneous media. Our approximation is based on a Discontinuous Galerkin spectral element method coupled with a fourth stage Runge-Kutta time integration scheme. We partition the computational domain into non-overlapping subregions, according to the involved materials, and in each subdomain a spectral finite element discretization is employed. The partitions do not need to be geometrically conforming; furthermore, different polynomial approximation degrees are allowed within each subdomain. The numerical results show that the proposed method is accurate, flexible and well suited for wave propagation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antonietti, P.F., Mazzieri, I., Quarteroni, A., Rapetti, F.: Non-conforming high order approximations of the elastodynamics equation. Comput. Meth. Appl. Mech. Eng. 209–212, 212–238 (2012)

    Article  MathSciNet  Google Scholar 

  2. Chaljub, E., Capdeville, Y., Vilotte, J.P.: Solving elastodynamics in a fluid-solid heterogeneous sphere: a parallel spectral element approximation on non-conforming grids. J. Comput. Phys. 187(2), 457–491 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Clayton, R., Engquist, B.: Absorbing boundary conditions for acoustic and elastic wave equations, Bull. Seism. Soc. Am. 67, 1529–1540 (1977)

    Google Scholar 

  4. Cohen, G.C.: Higher-order numerical methods for transient wave equations. Springer-Verlag, Berlin (2002)

    Book  MATH  Google Scholar 

  5. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral methods - Fundamentals in single domains, Springer-Verlag, Berlin, (2006)

    MATH  Google Scholar 

  6. Faccioli, E., Maggio, F., Paolucci, R., Quarteroni, A.: 2-D and 3-D elastic wave propagation by a pseudo-spectral domain decomposition method. J. of Seismol. 1, 237–251 (1997)

    Article  Google Scholar 

  7. Givoli, D.: Non-reflecting boundary conditions: review article. J. Comput. Phys. 94, 1–29 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grote, M.J., Schneebeli, A., Schotzau, D.: Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44(6), 2408–2431 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. de la Puente, J., Kaser, M., Dumbser, M., Igel, H.: An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes – IV. Anisotropy. Geophys. J. Int. 169(3), 1210–1228 (2007)

    Article  Google Scholar 

  10. Komatitsch, D., Tromp, J.: Introduction to the spectral-element method for 3-D seismic wave propagation. Geophys. J. Int. 139, 806–822 (1999)

    Article  Google Scholar 

  11. Lambert, J.D.: Numerical methods for ordinary differential systems: the initial value problem. John Wiley & Sons Inc., New York, USA (1991)

    MATH  Google Scholar 

  12. Mercerat, E.D., Vilotte, J.P., Sanchez-Sesma, F.J.: Triangular spectral-element simulation of two-dimensional elastic wave propagation using unstructured triangular grids. Geophys. J. Int. 166(2), 679–698 (2006)

    Article  Google Scholar 

  13. Mazzieri, I.: Non-conforming high order methods for the elastodynamics equation. PhD. Thesis, Politecnico di Milano (2012)

    Google Scholar 

  14. Mazzieri, I., Smerzini, C., Antonietti, P.F., Rapetti, F., Stupazzini, M., Paolucci, R., Quarteroni, A.: Non-conforming spectral approximations for the elastic wave equation in heterogeneous media, Proceedings of COMPDYN 2011, 3rd International Conference in Computational Methods in Structural Dynamics and Earthquake Engineering (2011)

    Google Scholar 

  15. Priolo, E., Carcione, J.M., Seriani, G.: Numerical simulation of interface waves by high-order spectral modeling techniques. J. Acoust. Soc. Am. 95(2), 681–693 (1994)

    Article  Google Scholar 

  16. Stacey, R.: Improved transparent boundary formulations for the elastic-wave equation. Bull. Seismol. Soc. Am. 78(6), 2089–2097 (1988)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilario Mazzieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Antonietti, P.F., Mazzieri, I., Quarteroni, A., Rapetti, F. (2014). High Order Space-Time Discretization for Elastic Wave Propagation Problems. In: Azaïez, M., El Fekih, H., Hesthaven, J. (eds) Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM 2012. Lecture Notes in Computational Science and Engineering, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-319-01601-6_6

Download citation

Publish with us

Policies and ethics