Supporting Selection of Statistical Techniques

Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

In this paper we describe the necessity for a semi-structured approach towards the selection of techniques in quantitative research. Deciding for a set of suitable techniques to work with a given dataset is a non-trivial and time-consuming task. Thus, structured support for choosing adequate data analysis techniques is required. We present a structural framework for organizing techniques and a description template to uniformly characterize techniques. We show that the former will provide an overview on all available techniques on different levels of abstraction, while the latter offers a way to assess a single method as well as compare it to others.

References

  1. Dekking, F. M., Kraaikamp, C., Lopuhaa, H. P., & Meester, L. E. (2010). Modern introduction to probability and statistics. London: Springer.Google Scholar
  2. Fahrmeir, L., Künstler, R., Pigeot, I., & Tutz, G. (2007). Statistik: der Weg zur Datenanalyse; mit 25 Tabellen New York.Google Scholar
  3. Feelders, A., Daniels, H., & Holsheimer, M. (2000). Methodological and practical aspects of data mining. Information & Management, 37, 271–281.CrossRefGoogle Scholar
  4. Feller, W. (1971). An introduction to probability theory and its applications (2nd ed.) (Vol. 2, p. 669). New York: Wiley.Google Scholar
  5. Feller, W. (1968). An introduction to probability theory and its applications (3rd ed.) (Vol. 1, p. 509). New York: Wiley.Google Scholar
  6. Georgii, H.-O. (2007). Stochastik. (3rd ed.) (p. 378). Gruyter.Google Scholar
  7. Grob, H. L., & Bensberg, F. (2009). Das data-mining-konzept. Computergestütztes Controlling. Münster: Institut für Wirtschaftsinformatik.Google Scholar
  8. Härdle, W., & Simar, L. (2011). Applied multivariate statistical analysis. Berlin: Springer.Google Scholar
  9. Han, J., Kamber, M., & Pei, J. (2011). Data mining: concepts and techniques. (3rd ed.) (p. 744). Los Altos: Morgan Kaufmann.Google Scholar
  10. Hand, D. J., Mannila, H., & Smyth, P. (2001). Principles of data mining.Google Scholar
  11. Handl, A. (2002). Multivariate analysemethoden (p. 464). Berlin: Springer.Google Scholar
  12. Hartung, J., Elpelt, B., & Klösener, K.-H. (2009). Statistik. Lehr- und Handbuch der angewandten Statistik. Biometrical Journal, 15, 1145.Google Scholar
  13. Hastie, T., Tibshirani, R., & Friedman, J. (2008). The elements of statistical learning: Data mining, inference and prediction. International Statistical Review (2nd ed.) (Vol. 77, p. 745). Berlin: Springer.Google Scholar
  14. Jackson, J. (2002). Data mining: A conceptual overview. Communications of the Association for Information Systems, 8, 267–296.Google Scholar
  15. Witten, I. H., Frank, E., & Hall, M. A. (2011). Data mining: Practical machine learning tools and techniques. Annals of Physics (Vol. 54, p. 664). Los Altos: Morgan Kaufmann.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.European Research Center for Information System (ERCIS)MünsterGermany

Personalised recommendations