Skip to main content

Infinite Sets

  • Chapter
  • First Online:
The Real Numbers

Part of the book series: Undergraduate Texts in Mathematics ((UTM))

  • 7006 Accesses

Abstract

A set is said to be countable if its members can be enumerated—first member, second member, third member, and so on—and each member eventually appears in the enumeration. Notice that we do not assume that the enumeration ever comes to an end. If it does not, the set is called countably infinite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this book we use an ordinary minus sign to denote set difference. This is convenient later to show the parallel between set difference and number difference in measure theory. In any case, it will always be clear what kind of objects we are taking the difference of.

  2. 2.

    We use the notation \(\langle a,b,c,\ldots \rangle\) for the infinite sequence in conformity with the notations ⟨a, b⟩ and ⟨a, b, c⟩ for ordered pairs and triples.

References

  • Bolzano, B. (1817). Rein analytischer Beweis des Lehrsatzes dass zwischen je zwey Werthen, die ein entgegengesetzes Resultat gewähren, wenigstens eine reelle Wurzel der Gleichung liege. Ostwald’s Klassiker, vol. 153. Engelmann, Leipzig, 1905. English translation in Russ (2004), 251–277.

    Google Scholar 

  • Borel, É. (1895). Sur quelques points de la thĂ©orie des fonctions. Ann. Sci. École Norm. Sup. 12, 9–55.

    MathSciNet  MATH  Google Scholar 

  • Bressoud, D. M. (2008). A Radical Approach to Lebesgue’s Theory of Integration. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Cantor, G. (1874). Ăśber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen. J. reine und angew. Math. 77, 258–262. In his Gesammelte Abhandlungen, 145–148. English translation by W. Ewald in Ewald (1996), vol. II, 840–843.

    Google Scholar 

  • Cantor, G. (1878). Ein Beitrag zur Mannigfaltigkeitslehre. J. reine und angew. Math. 84, 242–258.

    Article  Google Scholar 

  • Cantor, G. (1891). Ăśber eine elementare Frage der Mannigfaltigkeitslehre. Jahresber. deutsch. Math. Verein. 1, 75–78. English translation by W. Ewald in Ewald (1996), vol. II, 920–922.

    Google Scholar 

  • Cauchy, A.-L. (1821). Cours d’Analyse. Chez Debure Frères. Annotated English translation in Bradley and Sandifer (2009).

    Google Scholar 

  • Dedekind, R. (1888). Was sind und was sollen die Zahlen? Braunschweig: Vieweg und Sohn. English translation in: Essays on the Theory of Numbers, Dover, New York, 1963.

    Google Scholar 

  • du Bois-Reymond, P. (1875). Ăśber asymptotische Werte, infinitäre Approximationen und infinitäre Auflösung von Gleichungen. Math. Ann. 8, 363–414.

    Article  MathSciNet  MATH  Google Scholar 

  • FerreirĂłs, J. (1999). Labyrinth of Thought. Basel: Birkhäuser Verlag.

    Book  MATH  Google Scholar 

  • Gamow, G. (1947). One, Two, Three, …, Infinity. New York: Viking Press.

    Google Scholar 

  • GouvĂŞa, F. Q. (2011). Was Cantor surprised? Amer. Math. Monthly 118(3), 198–209.

    Article  MathSciNet  MATH  Google Scholar 

  • Harnack, A. (1885). Ăśber den Inhalt von Punktmengen. Math. Ann. 25, 241–250.

    Article  MathSciNet  Google Scholar 

  • Heine, E. (1872). Die Elemente der Functionenlehre. J. reine und angew. Math. 74, 172–188.

    Article  MATH  Google Scholar 

  • Hermite, C. (1873). Sur la fonction exponentielle. Comptes Rendus LXXVII. 18–24, 74–49, 226–233, 285–293 .. In his Ĺ’uvres 3, 150–181.

    Google Scholar 

  • Kelvin, L. (1889). Popular Lectures and Addresses. London: Macmillan.

    Google Scholar 

  • Liouville, J. (1851). Sur des classes très-Ă©tendues de quantitĂ©s dont la valeur n’est ni algĂ©brique, ni mĂŞme rductible Ă  des irrationelles algĂ©briques. J. Math. pures appl 16, 133–142.

    Google Scholar 

  • Smith, H. J. S. (1875). On the integration of discontinuous functions. Proc. London Math. Soc. 6, 140–153.

    MATH  Google Scholar 

  • Weierstrass, K. (1874). Einleitung in die Theorie der analytischen Funktionen. Summer Semester 1874. Notes by G. Hettner. Mathematische Institut der Universität Göttingen.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stillwell, J. (2013). Infinite Sets. In: The Real Numbers. Undergraduate Texts in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-01577-4_3

Download citation

Publish with us

Policies and ethics