A Survey of Adaptive Game AI: Considerations for Cloud Deployment

  • Gabriel Iuhasz
  • Victor Ion Munteanu
  • Viorel Negru
Part of the Studies in Computational Intelligence book series (SCI, volume 511)

Abstract

Modern video games have become an important part of AI research in the past years, largely thanks to the characteristics of their environment and the challenges they pose to AI researchers. This paper is a a survey of the current game AI state of the art and highlights important achievements in this field. An adaptive multi-agent system that can be deployed on a cloud infrastructure to solve computational constraints of advanced machine learning methods is also presented.

Keywords

Artificial Intelligence Video Games Machine Learning Multi-Agent Systems Cloud Computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lewis, J.M., Trinh, P., Kirsh, D.: A corpus analysis of strategy video game play in starcraft: Brood war. In: Proceedings of the 33rd Annual Conference of the Cognitive Science Society (2011)Google Scholar
  2. 2.
    Laird, J.E., van Lent, M.: Human-level ai’s killer application: Interactive computer games. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence. pp. 1171–1178, AAAI Press (2000)Google Scholar
  3. 3.
    Buro, M.: Real-time strategy gaines: a new ai research challenge. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence, IJCAI 2003, pp. 1534–1535. Morgan Kaufmann Publishers Inc., San Francisco (2003)Google Scholar
  4. 4.
    Yildirim, S., Stene, S.B.: A survey on the need and use of ai in game agents. In: Proceedings of the 2008 Spring Simulation Multiconference, SpringSim 2008, pp. 124–131. Society for Computer Simulation International, San Diego (2008)Google Scholar
  5. 5.
    Aha, D.W., Molineaux, M., Ponsen, M.: Learning to win: Case-based plan selection in a real-time strategy game. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 5–20. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Langley, P., Choi, D.: A unified cognitive architecture for physical agents. In: Proceedings of the 21st National Conference on Artificial Intelligence, AAAI 2006, vol. 2, pp. 1469–1474. AAAI Press (2006)Google Scholar
  7. 7.
    Muñoz-Avila, H., Jaidee, U., Aha, D.W., Carter, E.: Goal-driven autonomy with case-based reasoning. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS, vol. 6176, pp. 228–241. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Josyula, D.P.: A unified theory of acting and agency for a universal interfacing agent. PhD thesis, College Park, MD, USA, AAI3202442 (2005)Google Scholar
  9. 9.
    Szczepanski, T., Aamodt, A.: Case-based reasoning for improved micromanagement in real-time strategy games. In: Proceedings of the Workshop on Case-Based Reasoning for Computer Games, 8th International Conference on Case-Based Reasoning, ICCBR 2009, pp. 139–148 (July 2009)Google Scholar
  10. 10.
    McGee, K., Abraham, A.T.: Real-time team-mate ai in games: a definition, survey, & critique. In: Proceedings of the Fifth International Conference on the Foundations of Digital Games, FDG 2010, pp. 124–131. ACM, New York (2010)CrossRefGoogle Scholar
  11. 11.
    Choi, D.: Reactive goal management in a cognitive architecture. Cogn. Syst. Res. 12(3-4), 293–308 (2011)CrossRefGoogle Scholar
  12. 12.
    Hartley, T., Mehdi, Q.: Online action adaptation in interactive computer games, vol. 7, pp. 28:1–28:31. ACM, New York (2009)Google Scholar
  13. 13.
    Grey, J., Bryson, J.J.: Procedural quests: A focus for agent interaction in role-playing-games. In: Proceedings of the AISB 2011 Symposium: AI & Games (2011)Google Scholar
  14. 14.
    Claypool, M., Claypool, K.: Latency and player actions in online games. Commun. ACM 49(11), 40–45 (2006)CrossRefGoogle Scholar
  15. 15.
    Ballinger, C.A., Turner, D.A., Concepcion, A.I.: Artificial intelligence design in a multiplayer online role playing game. In: Proceedings of the 2011 Eighth International Conference on Information Technology: New Generations, ITNG 2011, pp. 816–821. IEEE Computer Society, Washington, DC (2011)CrossRefGoogle Scholar
  16. 16.
    Synnaeve, G., Bessière, P.: Bayesian modeling of a human mmorpg player. CoRR abs/1011.5480 (2010)Google Scholar
  17. 17.
    Aranda, G., Botti, V., Carrascosa, C.: Mmog based on mas: the mmog layer. In: Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2009, Richland, SC, pp. 1149–1150. International Foundation for Autonomous Agents and Multiagent Systems (2009)Google Scholar
  18. 18.
    Synnaeve, G., Bessière, P.: Special tactics: A bayesian approach to tactical decision-making. In: CIG, pp. 409–416 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Gabriel Iuhasz
    • 1
  • Victor Ion Munteanu
    • 1
    • 2
  • Viorel Negru
    • 1
    • 2
  1. 1.West University of TimişoaraTimişoaraRomania
  2. 2.Institute e-Austria TimişoaraTimişoaraRomania

Personalised recommendations