Scalable Spatio-temporal Analysis on Distributed Camera Networks

  • Kirak Hong
  • Beate Ottenwälder
  • Umakishore Ramachandran
Part of the Studies in Computational Intelligence book series (SCI, volume 511)


Technological advances and the low cost of cameras enable the deployment of large-scale camera networks in airports and metropolises. A well-known technique, called spatio-temporal analysis, enables detecting anomalies on the largescale camera networks by automatically inferring locations of occupants in realtime. However, spatio-temporal analysis requires a huge amount of system resources to analyze a large number of video streams from distributed cameras. In particular, state update becomes a bottleneck because of the computation and communication overhead of updating a large application state. In this paper we propose a system design and mechanisms for scalable spatio-temporal analysis on camera networks. We present a distributed system architecture including smart cameras and distributed worker nodes in the cloud to enable real-time spatio-temporal analysis on large-scale camera networks. Furthermore we develop selective update mechanisms to improve scalability of our system by reducing the communication cost for state update.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schiphol Airport leverages technology to drive efficiency,
  2. 2.
    Feris, R., Hampapur, A., Zhai, Y., Bobbitt, R., Brown, L., Vaquero, D., Tian, Y., Liu, H., Sun, M.T.: Case-Study: IBM smart surveillance system. In: Ma, Y., Qian, G. (eds.) Intelligent Video Surveillance: Systems and Technologies. Taylor & Francis, CRC Press (2009)Google Scholar
  3. 3.
    Hong, K., Smaldone, S., Shin, J., Lillethun, D., Iftode, L., Ramachandran, U.: Target container: A target-centric parallel programming abstraction for video-based surveillance. In: 2011 Fifth ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC), pp. 1–8 (2011)Google Scholar
  4. 4.
    Kalashnikov, D.V., Ma, Y., Mehrotra, S., Hariharan, R.: Index for fast retrieval of uncertain spatial point data. In: Proc. of Int’l Symposium on Advances in Geographic Information Systems (ACM GIS 2006), Arlington, VA, USA (2006)Google Scholar
  5. 5.
    Menon, V., Jayaraman, B., Govindaraju, V.: The Three Rs of Cyberphysical Spaces. Computer 44, 73–79 (2011)CrossRefGoogle Scholar
  6. 6.
    Ramachandran, U., Hong, K., Iftode, L., Jain, R., Kumar, R., Rothermel, K., Shin, J., Sivakumar, R.: Large-scale situation awareness with camera networks and multimodal sensing. Proceedings of the IEEE 100(4), 878–892 (2012)CrossRefGoogle Scholar
  7. 7.
    Trajcevski, G., Ding, H., Scheuermann, P., Cruz, I.: Bora: Routing and aggregation for distributed processing of spatio-temporal range queries. In: 2007 International Conference on Mobile Data Management, pp. 36–43 (2007)Google Scholar
  8. 8.
    Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette analysis-based gait recognition for human identification. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(12), 1505–1518 (2003)CrossRefGoogle Scholar
  9. 9.
    Wolfson, O., Xu, B., Chamberlain, S., Jiang, L.: Moving objects databases: issues and solutions. In: Proceedings of the Tenth International Conference on Scientific and Statistical Database Management, pp. 111–122 (1998)Google Scholar
  10. 10.
    Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature survey. ACM Comput. Surv. 35(4), 399–458 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Kirak Hong
    • 1
  • Beate Ottenwälder
    • 2
  • Umakishore Ramachandran
    • 1
  1. 1.College of ComputingGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Institute of Parallel and Distributed SystemsUniversity of StuttgartStuttgartGermany

Personalised recommendations