Skip to main content

Prediction of Potential Kinase Inhibitors in Leishmania spp. through a Machine Learning and Molecular Docking Approach

  • Conference paper
Advances in Computational Biology

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 232))

  • 2158 Accesses

Abstract

Currently, tropical diseases are a major research objective in biomedical sciences due to the overall impact on vulnerable populations ignored by pharmaceutical companies. For that reason, the search for new therapeutic treatments is essential in the fight against tropical parasites such as Leishmania spp. The proposed approach will involve collecting the set of kinases from both the parasite and other organisms (except human), attempting to identify compounds and approved drugs, which are selective to the parasite, based on in silico methodologies. ChEMBL, Therapeutic Target Database (TTD) and DrugBank were used as sources for a list of compounds and kinase drug targets, which were represented using fingerprints based on patterns detected in the protein sequence, and a set of descriptors based on physic-chemical properties of the catalytic domains. The enzymes were used as a training set for a Support Vector Machine in conjunction with Feature Selection techniques, looking to predict druggable kinases, found in five sequenced Leishmania species. Following the target selection, a list of compounds was inferred and filtered according to some cheminformatics protocols. Finally, to support the predictions, some Leishmania kinases and their associated compounds were 3D modeled, and docked to each other according to a consensus docking schema based on the open packages AutoDock 4, AutoDockVina and DOCK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. World Health Organization: Leishmaniasis: worldwide epidemiological and drug access update (2012)

    Google Scholar 

  2. Maltezou, H.: Drug resistance in visceral leishmaniasis. J. Biomed. Biotechnol. 2010 (2010)

    Google Scholar 

  3. Goyeneche-Patino, D., Valderrama, L., Walker, J., Saravia, N.: Antimony resistance and trypanothione in experimentally selected and clinical strains of Leishmania panamensis. Antimicrob. Agents. Ch. 52(12), 4503–4506 (2008)

    Article  Google Scholar 

  4. Choudhury, K., Zander, D., Kube, M., Reinhardt, R., Clos, J.: Identification of a Leishmania infantum gene mediating resistance to miltefosine and SbIII. Int. J. Parasitol. 38(12), 1411–1423 (2008)

    Article  Google Scholar 

  5. Brooijmans, N., Mobilio, D., Walker, G., Nilakantan, R., Denny, R., Feyfant, E., Diller, D., et al.: A structural informatics approach to mine kinase knowledge bases. Drug. Discov. Today 15(5-6), 203–209 (2010)

    Article  Google Scholar 

  6. Naula, C., Parsons, M., Mottram, J.: Protein kinases as drug targets in trypanosomes and Leishmania. Biochim. Biophys. Acta. 1754(1-2), 151–159 (2005)

    Article  Google Scholar 

  7. Ochoa, R., Florez, A., Muskus, C.: Detección in silico de segundos usos de medicamentos con potencial acción leishmanicida. Ingeniería Biomédica 10, 10–16 (2011)

    Google Scholar 

  8. Knox, C., Law, V., Jewison, T., Liu, P., Ly, S., Frolkis, A., Pon, A., et al.: DrugBank 3.0: a comprehensive resource for “omics” research on drugs. Nucleic. Acids. Res. 39, D1035–D1041 (2011)

    Google Scholar 

  9. Zhu, F., Shi, Z., Qin, C., Tao, L., Liu, X., Xu, F., Zhang, L., et al.: Therapeutic target database update 2012: a resource for facilitating target-oriented drug discovery. Nucleic. Acids. Res. 40, D1128–D1136 (2012)

    Google Scholar 

  10. Gaulton, A., Bellis, L., Bento, P., Chambers, J., Davies, M., Hersey, A., Light, Y., et al.: ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic. Acids. Res. 40, D1100–D1107 (2012)

    Google Scholar 

  11. Altschup, S., Gish, W., Pennsylvania, T., Park, U.: Basic Local Alignment Search Tool. J. Mol. Biol. 215, 403–410 (1990)

    Google Scholar 

  12. Hall, M., National, H., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1), 10–18 (2009)

    Article  Google Scholar 

  13. Flicek, P., Aken, B.L., Beal, K., Ballester, B., Caccamo, M., Chen, Y., Clarke, L., et al.: Ensembl 2008. Nucleic. Acids. Res. 36, D707–D714 (2008)

    Google Scholar 

  14. Li, L., Stoeckert, C., Roos, D.: OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome. Res. 13(9), 2178–2189 (2003)

    Article  Google Scholar 

  15. Baell, J., Holloway, G.: New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 53(7), 2719–2740 (2010)

    Article  Google Scholar 

  16. Irwin, J., Sterling, T., Mysinger, M., Bolstad, E., Coleman, R.: ZINC: A Free Tool to Discover Chemistry for Biology. J. Chem. Inf. Model. 52(7), 1757–1768 (2012)

    Article  Google Scholar 

  17. Pieper, U., Eswar, N., Braberg, H., Madhusudhan, M., Davis, F., Stuart, A., Mirkovic, N., et al.: MODBASE, a database of annotated comparative protein structure models, and associated resources. Nucleic. Acid. Res. 32, D217–D222 (2004)

    Google Scholar 

  18. Morris, G., Huey, R., Lindstrom, W., Sanner, M., Belew, R., Goodsell, D., Olson, A.: AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30(16), 2785–2791 (2009)

    Article  Google Scholar 

  19. Trott, O., Olson, A.: AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31(2), 455–461 (2010)

    Google Scholar 

  20. Lorber, D., Shoichet, B.: Flexible ligand docking using conformational ensembles Despite important successes. Protein. Sci. 7, 938–950 (1998)

    Article  Google Scholar 

  21. Kaye, P., Scott, P.: Leishmaniasis: complexity at the host-pathogen interface. Nat. Rev. Microbiol. 9(8), 604–615 (2011)

    Article  Google Scholar 

  22. Eswar, N., Webb, B., Marti-Renom, M., Madhusudhan, M., Eramian, D., Shen, M., Pieper, U., et al.: Comparative protein structure modeling using MODELLER. Current protocols in Bioinformatics 2(15), 1–30 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Ochoa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ochoa, R., Davies, M., Flórez, A., Espinosa, J., Muskus, C. (2014). Prediction of Potential Kinase Inhibitors in Leishmania spp. through a Machine Learning and Molecular Docking Approach. In: Castillo, L., Cristancho, M., Isaza, G., Pinzón, A., Rodríguez, J. (eds) Advances in Computational Biology. Advances in Intelligent Systems and Computing, vol 232. Springer, Cham. https://doi.org/10.1007/978-3-319-01568-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01568-2_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01567-5

  • Online ISBN: 978-3-319-01568-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics