Prediction of Potential Kinase Inhibitors in Leishmania spp. through a Machine Learning and Molecular Docking Approach

  • Rodrigo Ochoa
  • Mark Davies
  • Andrés Flórez
  • Jairo Espinosa
  • Carlos Muskus
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 232)


Currently, tropical diseases are a major research objective in biomedical sciences due to the overall impact on vulnerable populations ignored by pharmaceutical companies. For that reason, the search for new therapeutic treatments is essential in the fight against tropical parasites such as Leishmania spp. The proposed approach will involve collecting the set of kinases from both the parasite and other organisms (except human), attempting to identify compounds and approved drugs, which are selective to the parasite, based on in silico methodologies. ChEMBL, Therapeutic Target Database (TTD) and DrugBank were used as sources for a list of compounds and kinase drug targets, which were represented using fingerprints based on patterns detected in the protein sequence, and a set of descriptors based on physic-chemical properties of the catalytic domains. The enzymes were used as a training set for a Support Vector Machine in conjunction with Feature Selection techniques, looking to predict druggable kinases, found in five sequenced Leishmania species. Following the target selection, a list of compounds was inferred and filtered according to some cheminformatics protocols. Finally, to support the predictions, some Leishmania kinases and their associated compounds were 3D modeled, and docked to each other according to a consensus docking schema based on the open packages AutoDock 4, AutoDockVina and DOCK.


Bioinformatics Docking Machine Learning Leishmania Kinases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    World Health Organization: Leishmaniasis: worldwide epidemiological and drug access update (2012) Google Scholar
  2. 2.
    Maltezou, H.: Drug resistance in visceral leishmaniasis. J. Biomed. Biotechnol. 2010 (2010)Google Scholar
  3. 3.
    Goyeneche-Patino, D., Valderrama, L., Walker, J., Saravia, N.: Antimony resistance and trypanothione in experimentally selected and clinical strains of Leishmania panamensis. Antimicrob. Agents. Ch. 52(12), 4503–4506 (2008)CrossRefGoogle Scholar
  4. 4.
    Choudhury, K., Zander, D., Kube, M., Reinhardt, R., Clos, J.: Identification of a Leishmania infantum gene mediating resistance to miltefosine and SbIII. Int. J. Parasitol. 38(12), 1411–1423 (2008)CrossRefGoogle Scholar
  5. 5.
    Brooijmans, N., Mobilio, D., Walker, G., Nilakantan, R., Denny, R., Feyfant, E., Diller, D., et al.: A structural informatics approach to mine kinase knowledge bases. Drug. Discov. Today 15(5-6), 203–209 (2010)CrossRefGoogle Scholar
  6. 6.
    Naula, C., Parsons, M., Mottram, J.: Protein kinases as drug targets in trypanosomes and Leishmania. Biochim. Biophys. Acta. 1754(1-2), 151–159 (2005)CrossRefGoogle Scholar
  7. 7.
    Ochoa, R., Florez, A., Muskus, C.: Detección in silico de segundos usos de medicamentos con potencial acción leishmanicida. Ingeniería Biomédica 10, 10–16 (2011)Google Scholar
  8. 8.
    Knox, C., Law, V., Jewison, T., Liu, P., Ly, S., Frolkis, A., Pon, A., et al.: DrugBank 3.0: a comprehensive resource for “omics” research on drugs. Nucleic. Acids. Res. 39, D1035–D1041 (2011)Google Scholar
  9. 9.
    Zhu, F., Shi, Z., Qin, C., Tao, L., Liu, X., Xu, F., Zhang, L., et al.: Therapeutic target database update 2012: a resource for facilitating target-oriented drug discovery. Nucleic. Acids. Res. 40, D1128–D1136 (2012)Google Scholar
  10. 10.
    Gaulton, A., Bellis, L., Bento, P., Chambers, J., Davies, M., Hersey, A., Light, Y., et al.: ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic. Acids. Res. 40, D1100–D1107 (2012)Google Scholar
  11. 11.
    Altschup, S., Gish, W., Pennsylvania, T., Park, U.: Basic Local Alignment Search Tool. J. Mol. Biol. 215, 403–410 (1990)Google Scholar
  12. 12.
    Hall, M., National, H., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1), 10–18 (2009)CrossRefGoogle Scholar
  13. 13.
    Flicek, P., Aken, B.L., Beal, K., Ballester, B., Caccamo, M., Chen, Y., Clarke, L., et al.: Ensembl 2008. Nucleic. Acids. Res. 36, D707–D714 (2008)Google Scholar
  14. 14.
    Li, L., Stoeckert, C., Roos, D.: OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome. Res. 13(9), 2178–2189 (2003)CrossRefGoogle Scholar
  15. 15.
    Baell, J., Holloway, G.: New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 53(7), 2719–2740 (2010)CrossRefGoogle Scholar
  16. 16.
    Irwin, J., Sterling, T., Mysinger, M., Bolstad, E., Coleman, R.: ZINC: A Free Tool to Discover Chemistry for Biology. J. Chem. Inf. Model. 52(7), 1757–1768 (2012)CrossRefGoogle Scholar
  17. 17.
    Pieper, U., Eswar, N., Braberg, H., Madhusudhan, M., Davis, F., Stuart, A., Mirkovic, N., et al.: MODBASE, a database of annotated comparative protein structure models, and associated resources. Nucleic. Acid. Res. 32, D217–D222 (2004)Google Scholar
  18. 18.
    Morris, G., Huey, R., Lindstrom, W., Sanner, M., Belew, R., Goodsell, D., Olson, A.: AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30(16), 2785–2791 (2009)CrossRefGoogle Scholar
  19. 19.
    Trott, O., Olson, A.: AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31(2), 455–461 (2010)Google Scholar
  20. 20.
    Lorber, D., Shoichet, B.: Flexible ligand docking using conformational ensembles Despite important successes. Protein. Sci. 7, 938–950 (1998)CrossRefGoogle Scholar
  21. 21.
    Kaye, P., Scott, P.: Leishmaniasis: complexity at the host-pathogen interface. Nat. Rev. Microbiol. 9(8), 604–615 (2011)CrossRefGoogle Scholar
  22. 22.
    Eswar, N., Webb, B., Marti-Renom, M., Madhusudhan, M., Eramian, D., Shen, M., Pieper, U., et al.: Comparative protein structure modeling using MODELLER. Current protocols in Bioinformatics 2(15), 1–30 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Rodrigo Ochoa
    • 1
  • Mark Davies
    • 2
  • Andrés Flórez
    • 3
  • Jairo Espinosa
    • 4
  • Carlos Muskus
    • 1
  1. 1.Programa de Estudio y Control de Enfermedades Tropicales- PECETUniversidad de AntioquiaMedellínColombia
  2. 2.European Bioinformatics InstituteHinxtonUnited Kingdom
  3. 3.DKFZ, German Cancer Research CenterHeidelbergGermany
  4. 4.Grupo de Automática - GAUNALUniversidad Nacional Sede MedellínMedellínColombia

Personalised recommendations