Advertisement

iTRAQ, The High Throughput Data Analysis of Proteins to Understand Immunologic Expression in Insect

  • Amalia Muñoz-Gómez
  • Mauricio Corredor
  • Alfonso Benítez-Páez
  • Carlos Peláez
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 232)

Abstract

Isobaric tags for relative and absolute quantification of protein expression (iTRAQ®) is a powerful tool which is combined with the accuracy of Mass Spectrometry for protein identification. This tool was approached to detect proteins associated to the innate immune system of Galleria mellonella in response to pathogenesis caused by Fusarium oxysporum. After experimental approaches, iTRAQ data was used to set up computational analysis based on identification and quantification of peptides and proteins against different protein databases by using ProteinPilotTM and Mascot Distiller search engines. iTRAQ battery was able to identify more than 340 peptides corresponding to 39 putative proteins from G. mellonella and close related species. Despite the low level of genomic and proteomic information available for G. mellonella, iTRAQ demonstrated to be reliable strategy to determine changes in protein expression as a consequence of the infection process induced in G. mellonella. Consequently, it was found differential expression in proteins directly involved in innate immune response such as cecropin-D-like peptide, lysozyme, and hemolin, indicating an active response of G. mellonella in early stages of fungal infection.

Keywords

iTRAQ fungal infection innate immune system Galleria mellonella Fusarium oxysporum model insect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mukherjee, K., Hain, T., Fischer, R., Chakraborty, T., Vilcinskas, A.: Brain infection and activation of neuronal repair mechanisms by the human pathogen Listeria monocytogenes in the lepidopteran model host Galleria mellonella. Virulence 24 4(4) (2013)Google Scholar
  2. 2.
    Navarro-Velasco, G.J., Prados-Rosales, R.C., Ortíz-Urquiza, A.: Quesada-Moraga. E., Di Pietro, A.: Galleria mellonella as model host for the trans-kingdom pathogen Fusarium oxysporum. Fungal Genet. Biol., 1124–1129 (2011)Google Scholar
  3. 3.
    Lehane, M.J.: The Biology of Blood-Sucking in Insects, 2nd edn. Cambridge University Press, New York (2005)CrossRefGoogle Scholar
  4. 4.
    Lesch, C., Theopold, U.: Methods to study hemolymph clotting in insects. In: Beckage, N.E. (ed.) Insect Immunology, pp. 1–12. Academy Press, Salt Lake City (2008)Google Scholar
  5. 5.
    Schmid, O., Theopold, U., Beckage, N.E.: Insect and vertebrate inmunity: key similarities versus difference. In: Beckage, N.E. (ed.) Insect Immunology, pp. 1–24. Academic Press, Salt Lake City (2008)CrossRefGoogle Scholar
  6. 6.
    Ishii, K., Hamamoto, H., Kamimura, M., Nakamura, Y., Noda, H., Imamura, K., Mita, K., Sekimizu, K.: Insect Cytokine Paralytic Peptide (PP) Induces Cellular and Humoral Immune Responses in the Silkworm Bombyx mori. J. Biol. Chem. 285(37), 28635–28642 (2010)CrossRefGoogle Scholar
  7. 7.
    Vogel, H., Altincicek, B., Glöckner, G., Vilcinskas, A.: A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella. BMC Genomics 11(12), 308 (2011)CrossRefGoogle Scholar
  8. 8.
    Hu, Y., Wang, G., Chen, G.Y., Fu, X., Yao, S.Q.: Proteome analysis of Saccharomyces cerevisiae under metal stress by two-dimensional differential gel electrophoresis. Electrophoresis 24, 1458–1470 (2003)CrossRefGoogle Scholar
  9. 9.
    Aebersold, R., Mann, M.: Mass spectrometry-based proteomics. Nature 22(6928), 198–207 (2003)CrossRefGoogle Scholar
  10. 10.
    Muth, T., Keller, D., Puetz, S.M., Martens, L., Sickmann, A., Boehm, A.M.: jTraqX: a free, platform independent tool for isobaric tag quantitation at the protein level. Proteomics 10(6), 1223–1225 (2010)CrossRefGoogle Scholar
  11. 11.
    Schwacke, J.H., Hill, E.G., Krug, E.L., Comte-Walters, S., Schey, K.L.: iQuantitator: A tool for protein expression inference using iTRAQ. BMC Bioinformatics 10, 342 (2009)CrossRefGoogle Scholar
  12. 12.
    Coleman, J.J., Muhammed, M., Sperkovitz, P.V., Vyas, J.M., Mylonakis, E.: Fusarium pathogenesis investigated using Galleria mellonella as a heterologous host. Fungal Biol. 115, 1279–1289 (2011)CrossRefGoogle Scholar
  13. 13.
    Altschul, S.F., Gish, W., Miller, M., Myers, E.W., Lipman, D.J.: Basic Local Alignment Search Tool. J. Mol. Biol. 215, 403–410 (1990)Google Scholar
  14. 14.
    Edgar, R.C.: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004), doi:10.1093/nar/gkh340Google Scholar
  15. 15.
    Do, C.B., Mahabhashyam, M.S.P., Brudno, M., Batzoglou, S.: ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Research 15, 330–340 (2005)CrossRefGoogle Scholar
  16. 16.
    Buyukguzel, E., Tunaz, H., Stanley, D., Buyukguzel, K.: Eicosanoids mediate Galleria mellonella cellular immune response to viral infection. J. Insect Physiol. 53, 99–105 (2007)CrossRefGoogle Scholar
  17. 17.
    Dunphy, G.B., Oberholzer, U., Whiteway, M., Zakarian, R.J., Boomer, I.: Virulence of Candida albicans mutants toward larval Galleria mellonella (Insecta, Lepidoptera, Galleridae). Can. J. Microbiol. 49(8), 514–524 (2003)CrossRefGoogle Scholar
  18. 18.
    Whitten, M.A., Tew, I.F., Lee, B.L., Ratcliffe, N.A.: A Novel Role for an Insect Apolipoprotein. J. Immunol. 172, 2177–2185 (2004)Google Scholar
  19. 19.
    Wiesner, A., Losen, S., Kopácek, P., Weise, P., Gotz, P.: Isolated apolipophorin III from Galleria mellonella stimulates the immune reactions of this insect. J. Insect Physiol. 43, 383–391 (1997)CrossRefGoogle Scholar
  20. 20.
    Niere, M., MeiMlitzer, C., Dettlo, M., Weise, C., Ziegler, M., Wiesner, A.: Insect immune activation by recombinant Galleria mellonella apolipophorin III1. Biochim. Biophys. Acta 1433, 16–26 (1999)CrossRefGoogle Scholar
  21. 21.
    Lanz-Mendoza, H., Bettencourt, M.F., Faye, I.: Regulation of the Insect Immune Response: The Effect of Hemolin on Cellular Immune Mechanisms. Cell Immunol. 169, 47–54 (1996)CrossRefGoogle Scholar
  22. 22.
    Jiang, H., Vilcinskas, A., Kanost, M.R.: Immunity in lepidopteran insects. Adv. Exp. Med. Biol. 708, 181–204 (2010)CrossRefGoogle Scholar
  23. 23.
    Terenius, O.: Hemolin—A lepidopteran anti-viral defense factor? Dev. Comp. Immunol. 32, 311–316 (2008)CrossRefGoogle Scholar
  24. 24.
    Terenius, O., Pophamb, H.J.R., Shelby, K.S.: Bacterial, but not baculoviral infections stimulate Hemolin expression in noctuid moths. Dev. Comp. Immunol. 33, 1176–1185 (2009)CrossRefGoogle Scholar
  25. 25.
    Oppert, B., Dowd, S.E., Bouffard, P., Li, L., Conesa, A., Lorenzen, M.D., Toutges, M., Marshall, J., Huestis, D.L., Fabrick, J., Oppert, C., Jurat-Fuentes, J.L.: Transcriptome profiling of the intoxication response of Tenebrio molitor larvae to Bacillus thuringiensis Cry3Aa protoxin. PLoS ONE 7(4), e34624 (2012)Google Scholar
  26. 26.
    Gupta, L., Noh, J.Y., Jo, Y.H., Oh, S.H., Kumar, S., Noh, M.Y., Lee, Y.S., Cha, S.-J., Seo, S.J., Kim, I., Han, Y.S., Barillas-Mury, C.: Apolipophorin-III mediates antiplasmodial epithelial responses in Anopheles gambiae (G3) mosquitoes. PLoS ONE 5(11), e15410 (2010)Google Scholar
  27. 27.
    Contreras, E., Rausell, C., Real, M.D.: Proteome Response of Tribolium castaneum Larvae to Bacillus thuringiensis Toxin Producing Strains. PLoS ONE 8(1), e55330 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Amalia Muñoz-Gómez
    • 1
    • 2
    • 3
  • Mauricio Corredor
    • 2
    • 3
  • Alfonso Benítez-Páez
    • 2
    • 3
  • Carlos Peláez
    • 1
  1. 1.Grupo Interdisciplinario de Estudios Moleculares (GIEM), Instituto de QuímicaUniversidad de AntioquiaMedellínColombia
  2. 2.Genética y Bioquímica de Microorganismos (GEBIOMIC), Instituto de BiologíaUniversidad de AntioquiaMedellínColombia
  3. 3.Grupo de Análisis Bioinformático (GABi), Centro de Investigación y Desarrollo en Biotecnología CIDBIOBogotá, D.C.Colombia

Personalised recommendations