Analysis of Binding Residues between PDGF-BB and Epidermal Growth Factor Receptor: A Computational Docking Study

  • Ricardo Cabezas
  • Daniel Torrente
  • Marco Fidel Avila
  • Jannet González
  • George Emilio Barreto
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 232)


A directed docking was performed using Cluspro between human PDGF-BB and EGFR using specific templates obtained from PDB. Various conserved residues were found to be involved in the docking interaction of the complex by means of hydrophobic interactions and hydrogen bonds. An electrostatic potential evaluation of the PDGF-BB-EGFR complex was also performed to validate if the complex is electrostatically complementary in the binding area. Results suggested a possible binding mechanism which could explain the in vivo evidence of formation of heterodimeric receptors EGFR-PDGFR.


PDGF-BB EGFR docking Transactivation interactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ogiso, H.R., Ishitani, O., Nureki, S., Fukai, M., Yamanaka, J.H., Kim, K., Saito, A., Sakamoto, M., Inoue, M., Shirouzu, N., Yokoyama, S.: Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 110, 775–787 (2002)CrossRefGoogle Scholar
  2. 2.
    Ullrich, A., Coussens, L., Hayflick, J.S., Dull, T.J., Gray, A., Tam, A.W., Lee, J., Yarden, Y., Libermann, T.A., Schlessinger, J., Downward, J., Mayes, E.L.V., Whittle, N., Waterfield, M.D., Seeburg, P.H.: Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309, 418–425 (1984)CrossRefGoogle Scholar
  3. 3.
    Gan, H.K., Kaye, A.H., Luwor, R.B.: The EGFRvIII variant in glioblastoma multiforme. J. Clin. Neurosci. 16(6), 748–754 (2009)CrossRefGoogle Scholar
  4. 4.
    Bajaj, M., Waterfield, M.D., Schlessinger, J., Taylor, W.R., Blunprogram, C.N.S.: On the tertiary structure of the extracellular domains of the epidermal growth factor and insulin receptors. Biochim. Bio. Phys. Acta. 916, 220–226 (1987)CrossRefGoogle Scholar
  5. 5.
    Ward, C.W., Hoyne, P.A., Flegg, R.H.: Insulin and epidermal growth factor receptors contain the cysteine repeat motif found in the tumor necrosis factor receptor. Proteins 22, 141–153 (1995)CrossRefGoogle Scholar
  6. 6.
    Lu, C., Mi, L.Z., Grey, M.J., Zhu, J., Graef, E., Yokoyama, S., Springer, T.A.: Structural evidence for loose linkage between ligand binding and kinase activation in the epidermal growth factor receptor. Mol. Cell Biol. 22, 5432–5443 (2010)CrossRefGoogle Scholar
  7. 7.
    Haas-Kogan, D.A., Prados, M.D., Tihan, T., Eberhard, D.A., Jelluma, N.,: Epidermal growth factor receptor, protein kinase B/Akt, and glioma response to erlotinib. J. Natl. Cancer Inst. 97, 880–887 (2005)CrossRefGoogle Scholar
  8. 8.
    Burgaud, J.L., Baserga, R.: Intracellular transactivation of the insulin-like growth factor I receptor by an epidermal growth factor receptor. Exp. Cell Res. 223, 412–419 (1996)CrossRefGoogle Scholar
  9. 9.
    Saito, Y., Haendeler, J., Hojo, Y., Yamamoto, K., Berk, B.C.: Receptor heterodimerization: essential mechanism for platelet-derived growth factor-induced epidermal growth factor receptor transactivation. Mol. Cell Biol. 21(19), 6387–6394 (2001)CrossRefGoogle Scholar
  10. 10.
    Nazarenko, I., Hede, S.M., He, X., Hedrén, A., Thompson, J., Lindström, M.S., Nistér, M.: PDGF and PDGF receptors in glioma. Ups. J. Med. Sci. 117(2), 99–112 (2012)CrossRefGoogle Scholar
  11. 11.
    Brennan, C., Momota, H., Hambardzumyan, D., Ozawa, T., Tandon, A., Pedraza, A., Holland, E.: Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS ONE 4, e7752 (2009)Google Scholar
  12. 12.
    Matveev, S.V., Smart, E.J.: Heterologous desensitization of EGF receptors and PDGF receptors by sequestration in caveolae. Am. J. Physiol. Cell Physiol. 282(4), C935–C946 (2002)Google Scholar
  13. 13.
    Perrone, F., Da Riva, L., Orsenigo, M., Losa, M., Jocollè, G., Millefanti, C., Pastore, E., Gronchi, A., Pierotti, M.A., Pilotti, S.: PDGFRA, PDGFRB, EGFR, and downstream signaling activation in malignant peripheral nerve sheath tumor. Neuro Oncol. 11(6), 725–736 (2009)CrossRefGoogle Scholar
  14. 14.
    Li, J., Kim, Y.N., Bertics, P.J.: Platelet-derived growth factor stimulated migration of murine fibroblasts is associated with epidermal growth factor receptor expression and tyrosine phosphorylation. J. Biol. Chem. 275, 2951–2958 (2000)CrossRefGoogle Scholar
  15. 15.
    Countaway, J.L., Girones, N., Davis, R.J.: Reconstitution of epidermal growth factor receptor transmodulation by platelet-derived growth factor in Chinese hamster ovary cells. J. Biol. Chem. 264, 13642–13647 (1989)Google Scholar
  16. 16.
    Walker, F., Burgess, A.W.: Reconstitution of the high affinity epidermal growth factor receptor on cell-free membranes after transmodulation by platelet-derived growth factor. J. Biol. Chem. 266, 2746–2752 (1991)Google Scholar
  17. 17.
    Walker, F., de Blaquiere, J., Burgess, A.W.: Translocation of pp60csrc from the plasma membrane to the cytosol after stimulation by platelet derived growth factor. J. Biol. Chem. 268, 19552–19558 (1993)Google Scholar
  18. 18.
    Oefner, C., D’Arcy, A., Winkler, F.K., Eggimann, B., Hosang, M.: Crystal structure of human platelet-derived growth factor BB. EMBO J. (11), 3921–3926 (1992)Google Scholar
  19. 19.
    Berman, H.M., Bhat, T.N., Bourne, P.E., Feng, Z., Gilliland, G., Weissig, H., Westbrook, J.: The Protein Data Bank and the challenge of structural genomics. Nature Structural Biology (11), 957–959 (2000)Google Scholar
  20. 20.
    Comeau, R.S., Gatchell, W.D., Vajda, S., Camacho, J.C.: ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 20(1), 45–50 (2004)CrossRefGoogle Scholar
  21. 21.
    Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M.: CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983)CrossRefGoogle Scholar
  22. 22.
    Kozakov, D., Hall, D.R., Beglov, D., Brenke, R., Comeau, S.R., Shen, Y., Li, K., Zheng, J., Vakili, P., Paschalidis, I.C., Vajda, S.: Achieving reliability and high accuracy in automated protein docking: Cluspro, PIPER, SDU, and stability analysis in CAPRI rounds 13–19. Proteins: Structure, Function, and Bioinformatics 78, 3124–3130 (2010)CrossRefGoogle Scholar
  23. 23.
    Davis, et al.: MolProbity: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Research 32, W615–W619 (2004)Google Scholar
  24. 24.
    Laskowski, R.A., MacArthur, M.W., Thornton, J.M.: PROCHECK: validation of protein structure coordnates. In: Rossmann, M.G., Arnold, E. (eds.) International Tables of Crystallography, Volume F. Crystallography of Biological Macromolecules, pp. 722–725. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  25. 25.
    Laskowski, R.A., Swindells, M.B.: LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model 51(10), 2778–2786 (2011)CrossRefGoogle Scholar
  26. 26.
    Warren, L., DeLano.: The PyMOL Molecular Graphics System. DeLano Scientific LLC, San Carlos, CA, USA,
  27. 27.
    Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25(17), 3389–3402 (1997)CrossRefGoogle Scholar
  28. 28.
    Arnold, K., Bordoli, L., Kopp, J., Schwede, T.: SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201 (2006)CrossRefGoogle Scholar
  29. 29.
    Benkert, P., Biasini, M., Schwede, T.: Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27, 343–350 (2011)CrossRefGoogle Scholar
  30. 30.
    Johnsson, A., Heldin, C.H., Westmark, B., Wasteson, A.: Platelet-derived growth factor: Identification of constituent polypeptide chains Biochem. Biophys. Res. Commun. 104, 66–71 (1982)CrossRefGoogle Scholar
  31. 31.
    Deuel, T.F., Huang, J.S., Proffitt, R.T., Baenziger, J.U., Chang, D., Kennedy, B.B.: Human platelet-derived growth factor. Purification and resolution into two active protein fractions. J. Biol. Chem. 256, 8896–8899 (1981)Google Scholar
  32. 32.
    Matsui, T., Heidaran, M., Miki, T., Popescu, N., LaRochelle, W., Kraus, M., Pierce, J., Aaronson, S.: Isolation of a novel receptor cDNA establishes the existence of two PDGF receptor genes. Science 243, 800–804 (1989)CrossRefGoogle Scholar
  33. 33.
    Heldin, C.H., Westermark, B.: Mechanism of action and in vivo role of platelet-derived growth factor. Physiol. Rev. 79, 1283–1316 (1999)Google Scholar
  34. 34.
    Andrae, J., Gallini, R., Betsholtz, C.: Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 22(10), 1276–1312 (2008)CrossRefGoogle Scholar
  35. 35.
    Shim, A.H., Liu, H., Focia, P.J., Chen, X., Lin, P.C., He, X.: Structures of a platelet-derived growth factor/propeptide complex and a platelet-derived growth factor/receptor complex. Proc. Natl. Acad. Sci. U S A 107(25), 11307–11312 (2010)CrossRefGoogle Scholar
  36. 36.
    Tallquist, M., Kazlauskas, A.: PDGF signaling in cells and mice. Cytokine Growth Factor Rev. 15(4), 205–213 (2004)CrossRefGoogle Scholar
  37. 37.
    Ostman, A., Andersson, M., Hellman, U., Heldin, C.H.: Identification of three amino acids in the platelet-derived growth factor (PDGF) B-chain that are important for binding to the PDGF beta-receptor. J. Biol. Chem. 266, 10073–10077 (1991)Google Scholar
  38. 38.
    Pacifici, R.E., Thomason, A.R.: Hybrid tyrosine kinase/cytokine receptors transmit mitogenic signals in response to ligand. J. Biol. Chem. 269(3), 1571–1574 (1994)Google Scholar
  39. 39.
    Slaaby, R., Schäffer, L., Lautrup-Larsen, I., Andersen, A.S., Shaw, A.C., Mathiasen, I.S., Brandt, J.: Hybrid receptors formed by insulin receptor (IR) and insulin-like growth factor I receptor (IGF-IR) have low insulin and high IGF-1 affinity irrespective of the IR splice variant. J. Biol. Chem. 281(36), 25869–25874 (2006)CrossRefGoogle Scholar
  40. 40.
    Gschwind, A., Zwick, E., Prenzel, N., Leserer, M., Ullrich, A.: Cell communication networks: epidermal growth factor receptor transactivation as the paradigm for interreceptor signal transmission. Oncogene 20(13), 1594–1600 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ricardo Cabezas
    • 1
  • Daniel Torrente
    • 1
  • Marco Fidel Avila
    • 1
  • Jannet González
    • 1
  • George Emilio Barreto
    • 1
  1. 1.School of Sciences, Department of Nutrition and BiochemistryPontificia Universidad JaverianaBogotáColombia

Personalised recommendations