Identification of Differently Expresed Proteins Related to Drillings Fluids Exposure in Hydractinia Symbiolongicarpus by Mass Spectrometry

  • Iván Aurelio Páez-GutiérrezEmail author
  • Luis Fernando Cadavid
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 232)


Due to the interest of increasing the national oil production in Colombia, seawater exploration it is a real option. During well production, drilling fluids are used to support drilling boreholes into the earth or sea platform. Water-based drilling fluid (WBF) can be composed of several materials as clay, barite, emulsifier additives and metal ions. Although there are studies that evaluate mid and long-term effects to exposure to this fluids there is no way to monitor any potential effect on seawater organisms. Hydractinia symbiolongicarpus was used to evaluate the effect of WBF exposure in order to identify possible biomarkers that may aid to monitor seawater organism’s health and prevent any ecosystem disruption. Hydractinia was exposed to WBF and 30 Up-Regulated spot proteins were determined by 2D-DIGE. All spots proteins were identified by mass spectrometry using MASCOT and X! Tandem search engine. Glutathione-S-transferase and peroxiredoxin VI were recognized and proposed as possible biomarker since they are related to cell detoxification and redox homeostasis, respectively.


Mass spectrometry Hydractinia Drilling fluids biomarkers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Caenn, R., Chillingar, G.V.: Drilling fluids : State of the art. Journal of Petroleum Science and Engineering 14, 221–230 (1996)CrossRefGoogle Scholar
  2. 2.
    NRC NRC (U. S. C on ADT, Drilling and Excavation Technologies for the Future. 175 (1994) Google Scholar
  3. 3.
    Terazaghi, C., Buffagni, M., Cantelli, D., et al.: Physical-chemical and ecotoxicological evaluation of water based drilling fluids used in Italian off-shore. Chemosphere 37, 2859–2871 (1998)CrossRefGoogle Scholar
  4. 4.
    Dodge, R.E.: Effects of drilling mud on the reef-building coral Montastrea annularis. Marine Biology 71, 141–147 (1982)CrossRefGoogle Scholar
  5. 5.
    Thompson Jr., J.H., Shinn, E.A., Bright, T.J., Thompson, J.: Effects of Drilling Mud on Seven Species of Reef-Building Corals as Measured in the Field and Laboratory. In: Marine Environmental Pollution, 1 Hydrocarbons. Series RAGBT-EO, ch. 16, pp. 433–453. Elsevier (1980)Google Scholar
  6. 6.
    Mydlarz, L.D., Jones, L.E., Harvell, C.D.: Innate Immunity, Environmental Drivers, and Disease Ecology of Marine and Freshwater Invertebrates. Annual Review of Ecology, Evolution, and Systematics 37, 251–288 (2006)CrossRefGoogle Scholar
  7. 7.
    Ball, E.E., Hayward, D.C., Saint, R., Miller, D.J.: A simple plan–cnidarians and the origins of developmental mechanisms. Nature Reviews Genetics 5, 567–577 (2004)CrossRefGoogle Scholar
  8. 8.
    Frank, U., Leitz, T., Muller, W.A.: The hydroid Hydractinia: a versatile, informative cnidarian representative. BioEssays 23, 963–971 (2001)CrossRefGoogle Scholar
  9. 9.
    Martens, L., Vandekerckhove, J., Gevaert, K.: DBToolkit: processing protein databases for peptide-centric proteomics. Bioinformatics (Oxford, England) 21, 3584–3585 (2005)CrossRefGoogle Scholar
  10. 10.
    Craig, R., Beavis, R.C.: TANDEM: matching proteins with tandem mass spectra. Bioinformatics (Oxford, England) 20, 1466–1467 (2004)CrossRefGoogle Scholar
  11. 11.
    Altschul, S.F., Gish, W., Miller, W., et al.: Basic local alignment search tool. Journal of Molecular Biology 215, 403–410 (1990)Google Scholar
  12. 12.
    Champagne, A., Boutry, M.: Proteomics of nonmodel plant species. Proteomics 13, 663–673 (2013)CrossRefGoogle Scholar
  13. 13.
    Liska, A.J., Shevchenko, A.: Expanding the organismal scope of proteomics: cross-species protein identification by mass spectrometry and its implications. Proteomics 3, 19–28 (2003)CrossRefGoogle Scholar
  14. 14.
    Altschul, S.F., Madden, T.L., Schäffer, A.A., et al.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 3389–3402 (1997)CrossRefGoogle Scholar
  15. 15.
    Altschul, S.F., Wootton, J.C., Gertz, E.M., et al.: Protein database searches using compositionally adjusted substitution matrices. The FEBS Journal 272, 5101–5109 (2005)CrossRefGoogle Scholar
  16. 16.
    Goldstone, J.V.: Environmental sensing and response genes in cnidaria: the chemical defensome in the sea anemone Nematostella vectensis. Cell Biology and Toxicology 24, 483–502 (2008)CrossRefGoogle Scholar
  17. 17.
    Kim, S.Y., Jo, H.-Y., Kim, M.H., et al.: H2O2-dependent hyperoxidation of peroxiredoxin 6 (Prdx6) plays a role in cellular toxicity via up-regulation of iPLA2 activity. The Journal of Biological Chemistry 283, 33563–33568 (2008)CrossRefGoogle Scholar
  18. 18.
    David, E., Tanguy, A., Moraga, D.: Peroxiredoxin 6 gene: a new physiological and genetic indicator of multiple environmental stress response in Pacific oyster Crassostrea gigas. Aquatic Toxicology (Amsterdam, Netherlands) 84, 389–398 (2007)CrossRefGoogle Scholar
  19. 19.
    Eaton, D.L., Bammler, T.K.: Concise review of the glutathione S-transferases and their significance to toxicology. Toxicological Sciences: An Official Journal of the Society of Toxicology 49, 156–164 (1999)CrossRefGoogle Scholar
  20. 20.
    Farina, O., Ramos, R., Bastidas, C., García, E.: Biochemical responses of cnidarian larvae to mercury and benzo(a)pyrene exposure. Bulletin of Environmental Contamination and Toxicology 81, 553–557 (2008)CrossRefGoogle Scholar
  21. 21.
    Vijayavel, K., Downs, C.A., Ostrander, G.K., Richmond, R.H.: Oxidative DNA damage induced by iron chloride in the larvae of the lace coral Pocillopora damicornis. Comparative biochemistry and physiology Toxicology & Pharmacology: CBP 155, 275–280 (2012)CrossRefGoogle Scholar
  22. 22.
    Bakhtyar, S., Gagnon, M.M.: Toxicity assessment of individual ingredients of synthetic-based drilling muds (SBMs). Environmental Monitoring and Assessment 184, 5311–5325 (2012)CrossRefGoogle Scholar
  23. 23.
    Venn, A.A., Quinn, J., Jones, R., Bodnar, A.: P-glycoprotein (multi-xenobiotic resistance) and heat shock protein gene expression in the reef coral Montastraea franksi in response to environmental toxicants. Aquatic toxicology (Amsterdam, Netherlands) 93, 188–195 (2009)CrossRefGoogle Scholar
  24. 24.
    De, M., Jayarapu, K., Elenich, L., et al.: Beta 2 subunit propeptides influence cooperative proteasome assembly. The Journal of Biological Chemistry 278, 6153–6159 (2003)CrossRefGoogle Scholar
  25. 25.
    Kusumawidjaja, G., Kayed, H., Giese, N., et al.: Basic transcription factor 3 (BTF3) regulates transcription of tumor-associated genes in pancreatic cancer cells. Cancer Biology & Therapy 6, 367–376 (2007)CrossRefGoogle Scholar
  26. 26.
    Pauly, B., Lasi, M., MacKintosh, C., et al.: Proteomic screen in the simple metazoan Hydra identifies 14-3-3 binding proteins implicated in cellular metabolism, cytoskeletal organisation and Ca2+ signalling. BMC Cell Biology 8, 31 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Iván Aurelio Páez-Gutiérrez
    • 1
    Email author
  • Luis Fernando Cadavid
    • 1
  1. 1.Departament of Biology and Institute of GeneticsUniversidad Nacional de ColombiaBogotáColombia

Personalised recommendations