Analysis of Metabolic Functionality and Thermodynamic Feasibility of a Metagenomic Sample from “El Coquito” Hot Spring

  • Maria A. Zamora
  • Andres Pinzón
  • Maria M. Zambrano
  • Silvia Restrepo
  • Linda J. Broadbelt
  • Matthew Moura
  • Andrés Fernando González Barrios
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 232)


The study of metagenomic samples is crucial for understanding microbial communities. In this study, genomic samples of the “El Coquito” hot spring were analysed to identify their metabolic functionality, the thermodynamic restrictions and the influence of biogeochemical cycles. The metabolic functionality was determined assigning reactions and enzymes to the metabolic routes. To determinate the reversibility of the reactions we used the group contribution method. We also performed a topological analysis of the network. We found a total amount of 1930 reactions and 130 metabolic pathways. It was determined that at a pH of 3 there was 256 irreversible reactions and that the reactions involved in energy metabolism belonged to Carbon Fixation, Nitrogen and ammonia assimilation, and sulphur reduction. We found that the “El Coquito” metabolic network is a free scale network and that the clustering coefficients vary if the thermodynamic restrictions are included.


Metabolic reconstruction Thermodynamic restrictions Network topology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gilbert, J.A., Dupont, C.L.: Microbial Metagenomics: Beyond the Genome. Annual Review of Marine Science 3, 347–371 (2011)CrossRefGoogle Scholar
  2. 2.
    Jeffries, T.C., Seymour, J.R., Gilbert, J.A., Dinsdale, E.A., Newton, K., Leterme, S.S.C., Roudnew, B., Smith, R.J., Seuront, L., Mitchell, J.G.: Substrate Type Determines Metagenomic Profiles from Diverse Chemical Habitats. PLoS ONE 6, e25173 (2011)Google Scholar
  3. 3.
    Karlsson, F.H., Nookaew, I., Petranovic, D., Nielsen, J.: Prospects for systems biology and modeling of the gut microbiome. Trends in Biotechnology 29, 251–258 (2011)CrossRefGoogle Scholar
  4. 4.
    Dinsdale, E.A., Edwards, R.A., Hall, D., Angly, F., Breitbart, M., Brulc, J.M., Furlan, M., Desnues, C., Haynes, M., Li, L.L., McDaniel, L., Moran, M.A., Nelson, K.E., Nilsson, C., Olson, R., Paul, J., Brito, B.R., Ruan, Y.J., Swan, B.K., Stevens, R., Valentine, D.L., Thurber, R.V., Wegley, L., White, B.A., Rohwer, F.: Functional metagenomic profiling of nine biomes. Nature 452 (2008)Google Scholar
  5. 5.
    Logares, R., Haverkamp, T.H.A., Kumar, S., Lanzén, A., Nederbragt, A.J., Quince, C., Kauserud, H.: Environmental microbiology through the lens of high-throughput DNA sequencing: Synopsis of current platforms and bioinformatics approaches. Journal of Microbiological Methods 91, 106–113 (2012)CrossRefGoogle Scholar
  6. 6.
    Pinzón, A., Rodriguez-R, L.M., González, A., Bernal, A., Restrepo, S.: Targeted metabolic reconstruction: a novel approach for the characterization of plant–pathogen interactions. Briefings in Bioinformatics 12, 151–162 (2011)CrossRefGoogle Scholar
  7. 7.
    Lewin, A., Wentzel, A., Valla, S.: Metagenomics of microbial life in extreme temperature environments. Current Opinion in BiotechnologyGoogle Scholar
  8. 8.
    Jones, D.S., Albrecht, H.L., Dawson, K.S., Schaperdoth, I., Freeman, K.H., Pi, Y., Pearson, A., Macalady, J.L.: Community genomic analysis of an extremely acidophilic sulfur-oxidizing biofilm. ISME 6 (2012)Google Scholar
  9. 9.
    Jankowski, M.D., Henry, C.S., Broadbelt, L.J., Hatzimanikatis, V.: Group Contribution Method for Thermodynamic Analysis of Complex Metabolic Networks. Biophysical Journal 95, 1487–1499 (2008)CrossRefGoogle Scholar
  10. 10.
    Mavrovounotis, M.: Estimation of standard Gibbs energy changes of biotransformations. The Journal of Biological Chemistry 266, 14440–14445 (1991)Google Scholar
  11. 11.
    Henry, C., Jankowsky, M., Broadbelt, L., Hatzimanikatis, V.: Genome-scale thermodynamic analysis of Escherichia coli metabolism. Biophysical Journal 90, 1453–1461 (2006)CrossRefGoogle Scholar
  12. 12.
    Albert, R.: Scale-free networks in cell biology. J. Cell Sci. 118, 4947–4957 (2005)CrossRefGoogle Scholar
  13. 13.
    Bohorquez, L.C., Delgado-Serrano, L., López, G., Osorio-Forero, C., Klepac-Ceraj, V., Kolter, R., Junca, H., Baena, S., Zambrano, M.M.: In-depth characterization via complementing culture-independent approaches of the microbial community in an acidic hot spring of the Colombian Andes. Microb. Ecol. 63, 103–115 (2012)CrossRefGoogle Scholar
  14. 14.
    Doncheva, N.T., Assenov, Y., Domingues, F.S., Albrecht, M.: Topological analysis and interactive visualization of biological networks and protein structures. Nat. Protocols. 7, 670–685 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Maria A. Zamora
    • 1
  • Andres Pinzón
    • 2
  • Maria M. Zambrano
    • 3
  • Silvia Restrepo
    • 4
  • Linda J. Broadbelt
    • 5
  • Matthew Moura
    • 5
  • Andrés Fernando González Barrios
    • 1
  1. 1.Grupo de Diseño de Productos y Procesos (GDPP), Departamento de Ingeniería químicaUniversidad de los AndesBogotáColombia
  2. 2.Centro de Bioinformática y Biología ComputacionalManizalesColombia
  3. 3.GEBIX- Centro Colombiano de Genómica y BioinformáticaBogotáColombia
  4. 4.Laboratorio de Micología y Fitopatología, Departamento de Ciencias biológicasUniversidad de los AndesBogotáColombia
  5. 5.Departament of Chemical and Biological Engineering, McCormick School of Engineering, and Applied SciencesNorthwestern UniversityEvanstonUSA

Personalised recommendations