Escherichia coli’s OmpA as Biosurfactant for Cosmetic Industry: Stability Analysis and Experimental Validation Based on Molecular Simulations

  • Sonia Milena Aguilera Segura
  • Angie Paola Macías
  • Diana Carrero Pinto
  • Watson Lawrence Vargas
  • Martha Josefina Vives-Florez
  • Harold Enrique Castro Barrera
  • Oscar Alberto Álvarez
  • Andrés Fernando González Barrios
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 232)

Abstract

The development of biosurfactants has increased due to their biodegradability, low toxicity and specificity. The aim of this work is to analyze the behavior of the outer membrane protein A (OmpA) of Escherichia coli by Molecular Dynamics simulations and to perform experimental validation when used as stabilizer for dodecane/water emulsions. Trajectories were analyzed with the analysis tools provided by the GROMACS package. OmpA was purified from E. coli K-12 W3110/pCA24N strain in medium with isopropylthio- β-galactoside. Oil in water emulsions with different concentrations of OmpA were prepared in batch processes. MD trajectories with OmpA reached stability after 1 ns with an average RMSD value of 5.6 nm and they showed that OmpA remains stable in emulsion. An inverse effect related to protein concentration was found on the stability of the emulsion. OmpA displayed a significant role as a stabilizer for dodecane/water emulsions as the presence of OmpA increased their stability up to 7.5 h.

Keywords

Molecular Dynamics OmpA E. coli biosurfactant emulsions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banat, I., et al.: Microbial biosurfactants production, applications and future potential. Applied Microbiology and Biotechnology 87(2), 427–444 (2010)CrossRefGoogle Scholar
  2. 2.
    Zhao, X.: Design of self-assembling surfactant-like peptides and their applications. Current Opinion in Colloid & Interface Science 14(5), 340–348 (2009)CrossRefGoogle Scholar
  3. 3.
    Jones, D.B., Middelberg, A.P.J.: Mechanical Properties of Interfacially Adsorbed Peptide Networks. Langmuir 18(26), 10357–10362 (2002)CrossRefGoogle Scholar
  4. 4.
    Dexter, A.F., Malcolm, A.S., Middelberg, A.P.J.: Reversible active switching of the mechanical properties of a peptide film at a fluid–fluid interface. Nature Materials 5, 502–506 (2006)CrossRefGoogle Scholar
  5. 5.
    Barrios, A.F.G., et al.: Hha, YbaJ, and OmpA regulate Escherichia coli K12 biofilm formation and conjugation plasmids abolish motility. Biotechnology and Bioengineering 93(1), 188–200 (2006)CrossRefGoogle Scholar
  6. 6.
    Sugawara, E., et al.: Secondary structure of the outer membrane proteins OmpA of Escherichia coli and OprF of Pseudomonas aeruginosa. Journal of Bacteriology 178(20), 6067–6069 (1996)MathSciNetGoogle Scholar
  7. 7.
    Toren, A., et al.: The Active Component of the Bioemulsifier Alasan from Acinetobacter radioresistens KA53 Is an OmpA-Like Protein. Journal of Bacteriology 184(1), 165–170 (2002)CrossRefGoogle Scholar
  8. 8.
    Oostenbrink, C., et al.: Validation of the 53A6 GROMOS force field. European Biophysics Journal 34(4), 273–284 (2005)CrossRefGoogle Scholar
  9. 9.
    Kitagawa, M., et al.: Complete set of ORF clones of Escherichia coli ASKA library (A Complete Set of E. coli K-12 ORF Archive): Unique Resources for Biological Research. DNA Research 12(5), 291–299 (2006)CrossRefGoogle Scholar
  10. 10.
    Waterborg, J.: The Lowry Method for Protein Quantitation. In: Walker, J. (ed.) The Protein Protocols Handbook, pp. 7–9. Humana Press (2002)Google Scholar
  11. 11.
    le Coutre, J., et al.: Proteomics on Full-Length Membrane Proteins Using Mass Spectrometry†. Biochemistry 39(15), 4237–4242 (2000)CrossRefGoogle Scholar
  12. 12.
    Aronson, M.P.: The role of free surfactant in destabilizing oil-in-water emulsions. Langmuir 5(2), 494–501 (1989)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Izquierdo, P., et al.: Formation and Stability of Nano-Emulsions Prepared Using the Phase Inversion Temperature Method. Langmuir 18(1), 26–30 (2001)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Salager, J.: Cuaderno FIRP 300 A. Surfactantes. Tipos y usos. Laboratorio Firp. Universidad de los Andes, Venezuela (2002)Google Scholar
  15. 15.
    Griffin, W.C.: Classification of surface-active agents by "HLB". Journal of Cosmetic Science 1, 311–326 (1949)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sonia Milena Aguilera Segura
    • 1
  • Angie Paola Macías
    • 1
  • Diana Carrero Pinto
    • 1
  • Watson Lawrence Vargas
    • 1
  • Martha Josefina Vives-Florez
    • 2
  • Harold Enrique Castro Barrera
    • 3
  • Oscar Alberto Álvarez
    • 1
  • Andrés Fernando González Barrios
    • 1
  1. 1.Grupo de Diseño de Productos y Procesos (GDPP), Departamento de Ingeniería QuímicaUniversidad de los AndesBogotáColombia
  2. 2.Centro de Investigaciones Microbiológicas (CIMIC), Departamento de Ciencias BiológicasUniversidad de los AndesBogotóColombia
  3. 3.Grupo de Comunicaciones y Tecnología de la Información, Departamento de Ingeniería de SistemasUniversidad de los AndesBogotóColombia

Personalised recommendations