Advertisement

Candidates for New Molecules Controlling Allorecognition in Hydractinia symbiolongicarpus

  • Henry J. Rodríguez
  • Luis Fernando Cadavid
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 232)

Abstract

The sessile and colonial invertebrates have the capacity of distinguished between self and non-self tissues within of the same species. These allorecognition phenomena have been amply studied in the cnidarian Hydractinia symbiolongicarpus, where encounters between colonies result either in fusion or rejection. Allorecognition in endogamic lines of H. symbiolongicarpus is governed by two linked and polymorphic loci, alr1 and alr2, where colonies sharing at least one allele fuse whereas those sharing none reject. However, this model doesn’t fully predict the outcomes of encounters between wild-type animals, suggesting the existence of additional molecules controlling allorecognition in this species. In order to identify these molecules, we constructed three histocompatibility groups and used a comparative proteomics approach to identify proteins differentially expressed. We identified 48 proteins differentially expressed among the groups and 3 of them had structural features that make them candidates to participate in the control the allorecognition in H. symbiolongicarpus.

Keywords

Allorecognition Hydractinia proteomics Fibrinogen EGF-like 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rosengarten, R.D., Nicotra, M.L.: Model systems of invertebrate allorecognition. Current Biology 21, R82–R92 (2011)Google Scholar
  2. 2.
    Cadavid, L.F.: Self-discrimination in colonial invertebrates: genetic control of allorecognition in the hydroid Hydractinia. Developmental and Comparative Immunology 28, 871–879 (2004)CrossRefGoogle Scholar
  3. 3.
    Cadavid, L.F., Powell, A.E., Nicotra, M.L., Moreno, M., Buss, L.W.: An invertebrate histocompatibility complex. Genetics 167, 357–365 (2004)CrossRefGoogle Scholar
  4. 4.
    Nicotra, M.L., Powell, A.E., Rosengarten, R.D., Moreno, M., Grimwood, J., Lakkis, F.G., Dellaporta, S.L., Buss, L.W.: A hypervariable invertebrate allodeterminant. Current Biology 19, 583–589 (2009)CrossRefGoogle Scholar
  5. 5.
    Rosa, S.F.P., Powell, A.E., Rosengarten, R.D., Nicotra, M.L., Moreno, M.A., Grimwood, J., Lakkis, F.G., Dellaporta, S.L., Buss, L.W.: Hydractinia allodeterminant alr1 resides in an immunoglobulin superfamily-like gene complex. Current Biology 20, 1122–1127 (2010)CrossRefGoogle Scholar
  6. 6.
    Arevalo-Ferro, C., Hentzer, M., Reil, G., Görg, A., Kjelleberg, S., Givskov, M., Riedel, K., Eberl, L.: Identification of quorum-sensing regulated proteins in the opportunistic pathogen Pseudomonas aeruginosa by proteomics. Environmental Microbiology 5, 1350–1369 (2003)CrossRefGoogle Scholar
  7. 7.
    Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V., Mann, M.: In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protocols 1, 2856–2860 (2006)CrossRefGoogle Scholar
  8. 8.
    Craig, R., Beavis, R.C.: TANDEM: matching proteins with tandem mass spectra. Bioinformatics (Oxford, England) 20, 1466–1467 (2004)CrossRefGoogle Scholar
  9. 9.
    Frank, A., Pevzner, P.: PepNovo: de novo peptide sequencing via probabilistic network modeling. Analytical Chemistry 77, 964–973 (2005)CrossRefGoogle Scholar
  10. 10.
    Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden, T.L.: BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009)CrossRefGoogle Scholar
  11. 11.
    Geer, L.Y., Domrachev, M., Lipman, D.J., Bryant, S.H.: CDART: protein homology by domain architecture. Genome Research 12, 1619–1623 (2002)CrossRefGoogle Scholar
  12. 12.
    Kuo, W.-T., Chin, K.-H., Lo, W.-T., Wang, A.H.-J., Chou, S.-H.: Crystal structure of the C-terminal domain of a flagellar hook-capping protein from Xanthomonas campestris. Journal of Molecular Biology 381, 189–199 (2008)CrossRefGoogle Scholar
  13. 13.
    Harada, Y., Takagaki, Y., Sunagawa, M., Saito, T., Yamada, L., Taniguchi, H., Shoguchi, E., Sawada, H.: Mechanism of self-sterility in a hermaphroditic chordate. Science (New York, N.Y.) 320, 548–550 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Henry J. Rodríguez
    • 1
    • 2
  • Luis Fernando Cadavid
    • 1
    • 2
  1. 1.Department of BiologyUniversidad Nacional de ColombiaBogotáColombia
  2. 2.Institute of GeneticsUniversidad Nacional de ColombiaBogotáColombia

Personalised recommendations