Analysis of Structure and Hemolytic Activity Relationships of Antimicrobial Peptides (AMPs)

  • Jennifer Ruiz
  • Jhon Calderon
  • Paola Rondón-Villarreal
  • Rodrigo Torres
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 232)


Antimicrobial peptides (AMPs) have become in a potential source of last generation antibiotics, constituting a diverse group of molecules that participate in the innate immunity of multiple organisms. These molecules share some biochemical characteristics that can be used for identification and prediction of design of new AMPs by computational biology techniques. In spite of promising potential as antibiotics of AMPs, they are often cytotoxic for eukaryotic cells, being a limitation for their use as pharmaceuticals. Hemolytic concentration 50 (HC 50) constitutes one of the most used indicators of toxicity. In the present study, a relationship between HC 50 and physicochemical properties of peptides was analyzed. For this aim, we use a set of descriptors of 18 peptides, which were computed through computational biology tools and analyzed in order to determine relationship and behavior of these descriptors to predict cytotoxicity of AMPs.


Antimicrobial peptides Hemolytic HC50 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bolintineanu, D.S., Kaznessis, Y.N.: Computational studies of protegrin antimicrobial peptides: a review. Peptides 32(1) (2011)Google Scholar
  2. 2.
    López-García, B., Ubhayasekera, W., Gallo, R.L., Marcos, J.F.: Parallel evaluation of antimicrobial peptides derived from the synthetic PAF26 and the human LL37. Biochem. Biophys. Res. Commun. 356(1) (2007)Google Scholar
  3. 3.
    Tsai, C.W., Hsu, N.Y., Wang, C.H., Lu, C.Y., Chang, Y., Tsai, H.H.G., Ruaan, R.C.: Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides. J. Mol. Biol. 392(3) (2009)Google Scholar
  4. 4.
    Teixeira, V., Feio, M.J., Bastos, M.: Role of lipids in the interaction of antimicrobial peptides with membranes. Prog. Lipid Res. 51(2) (2012)Google Scholar
  5. 5.
    Frecer, V.: QSAR analysis of antimicrobial and haemolytic effects of cyclic cationic antimicrobial peptides derived from protegrin-1. Bioorg. Med. Chem. 14(17) (2006)Google Scholar
  6. 6.
    Juretić, D., Vukičević, D., Petrov, D., Novković, M., Bojović, V., Lučić, B., Ilić, N., Tossi, A.: Knowledge-based computational methods for identifying or designing novel, non-homologous antimicrobial peptides. Euro. Biophys. J. 40(4), 371–385 (2011)CrossRefGoogle Scholar
  7. 7.
    Arouri, A., Kiessling, V., Tamm, L., Dathe, M., Blume, A.: Morphological changes induced by the action of antimicrobial peptides on supported lipid bilayers. J. Phys. Chem. 115(1) (2011)Google Scholar
  8. 8.
    La Rocca, P., Biggin, P.C., Tieleman, D.P., Sansom, M.S.: Simulation studies of the interaction of antimicrobial peptides and lipid bilayers. BBA 1462(1-2) (1999)Google Scholar
  9. 9.
    Epand, R.F., Schmitt, M.A., Gellman, S.H., Epand, R.M.: Role of membrane lipids in the mechanism of bacterial species selective toxicity by two alpha/beta-antimicrobial peptides. BBA 1758(9) (2006) Google Scholar
  10. 10.
    Bahnsen, J.S.B., Franzyk, H., Sandberg-Schaal, A., Nielsen, H.M.R.: Antimicrobial and cell-penetrating properties of penetratin analogs: effect of sequence and secondary structure. BBA 1828(2) (2013)Google Scholar
  11. 11.
    Fernandez-Escamilla, A.M., Rousseau, F., Schymkowitz, J., Serrano, L.: Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat. Biotechnol. 22(10) (2004)Google Scholar
  12. 12.
    Kuhn-Nentwig, L., Muller, J., Schaller, J., Walz, A., Dathe, M., Nentwig, W.: Cupiennin 1, a new family of highly basic antimicrobial peptides in the venom of the spider Cupiennius salei (Ctenidae). J. Biol. Chem. 277(13) (2002)Google Scholar
  13. 13.
    Tachi, T., Epand, R.F., Epand, R.M., Matsuzaki, K.: Position-dependent hydrophobicity of the antimicrobial magainin peptide affects the mode of peptide-lipid interactions and selective toxicity. Biochemistry 41(34) (2002)Google Scholar
  14. 14.
    Lee, S.A., Kim, Y.K., Lim, S.S., Zhu, W.L., Ko, H., Shin, S.Y., Hahm, K.S., Kim, Y.: Solution structure and cell selectivity of piscidin 1 and its analogues. Biochemistry 46(12) (2007)Google Scholar
  15. 15.
    Schibli, D.J., Nguyen, L.T., Kernaghan, S.D., Rekdal, O.Y., Vogel, H.J.: Structure-function analysis of tritrpticin analogs: potential relationships between antimicrobial activities, model membrane interactions, and their micelle-bound NMR structures. Biophys. J. 91(12) (2006)Google Scholar
  16. 16.
    Pérez-Cordero, J.J., Lozano, J.M., Cortés, J., Delgado, G.: Leishmanicidal activity of synthetic antimicrobial peptides in an infection model with human dendritic cells. Peptides 32(4) (2011)Google Scholar
  17. 17.
    Cerovský, V., Slaninová, J., Fucík, V., Hulacová, H., Borovicková, L., Jezek, R., Bednárová, L.: New potent antimicrobial peptides from the venom of Polistinae wasps and their analogs. Peptides 29(6) (2008)Google Scholar
  18. 18.
    Ali, M.F., Lips, K.R., Knoop, F.C., Fritzsch, B., Miller, C., Conlon, J.M.: Antimicrobial peptides and protease inhibitors in the skin secretions of the crawfish frog, Rana areolata. BBA 1601(1) (2002)Google Scholar
  19. 19.
    Conlon, J.M., Al-Ghaferi, N., Abraham, B., Sonnevend, A., Coquet, L., Leprince, J., Jouenne, T., Vaudry, H., Iwamuro, S.: Antimicrobial peptides from the skin of the Tsushima brown frog Rana tsushimensis. Comp. Biochem. Physiol. Toxicol. Pharmacol. 143(1) (2006)Google Scholar
  20. 20.
    Subasinghage, A.P., Conlon, J.M., Hewage, C.M.: Conformational analysis of the broad-spectrum antibacterial peptide, ranatuerin-2CSa: identification of a full length helix-turn-helix motif. BBA 1784(6) (2008)Google Scholar
  21. 21.
    Lehrer, R., Barton, A., Daher, K.A., Harwig, S.S.L., Ganz, T., Selsted, M.E.: Interaction of Human Defensins with Escherichia coni Mechanism of Bactericidal Activity. J. Clinic. Invest. 84 (August 1989)Google Scholar
  22. 22.
    Vermeer, L.S., Lan, Y., Abbate, V., Ruh, E., Bui, T.T., Wilkinson, L.J., Kanno, T., Jumagulova, E., Kozlowska, J., Patel, J., McIntyre, C.A., Yam, W.C., Siu, G., Atkinson, R.A., Lam, J.K.W., Bansal, S.S., Drake, A.F., Mitchell, G.H., Mason, A.J.: Conformational flexibility determines selectivity and antibacterial, antiplasmodial, and anticancer potency of cationic α-helical peptides. J. Biol. Chem. 287(41) (2012)Google Scholar
  23. 23.
    Polyansky, A.A., Vassilevski, A.A., Volynsky, P.E., Vorontsova, O.V., Samsonova, O.V., Egorova, N.S., Krylov, N.A., Feofanov, A.V., Arseniev, A.S., Grishin, E.V., Efremov, R.G.: N-terminal amphipathic helix as a trigger of hemolytic activity in antimicrobial peptides: a case study in latarcins. FEBS Letters 583(14) (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jennifer Ruiz
    • 1
  • Jhon Calderon
    • 1
  • Paola Rondón-Villarreal
    • 2
  • Rodrigo Torres
    • 3
  1. 1.School of Bacteriology and Clinical LaboratoryUniversidad Industrial de Santander (UIS)BucaramangaColombia
  2. 2.School of Electrical, Electronics and Telecommunications EngineeringUISBucaramangaColombia
  3. 3.School of ChemistryGrupo de Investigación en Bioquímica y Microbiología (GIBIM), UISBucaramangaColombia

Personalised recommendations