Thermogenesis Driven by ATP Hydrolysis in a Model with Cubic Autocatalysis

  • Julián Cerón-Figueroa
  • Víctor Alonso López-Agudelo
  • Daniel Barragán
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 232)


A cubic autocatalytic model is used in order to study thermogenesis of a metabolic process driven by hydrolysis of ATP, with the purpose of modeling temperature gradients measured experimentally in living cells that carry out the active transport of the Ca2 +  ion. The model was taken to the scale of a living cell and the equation of energy balance was added in order to incorporate the effect of temperature in the process dynamic. A second law analysis was applied in order to determine the dynamic state and the value of the bifurcation parameters that favor efficiency of the system’s thermogenic activity. Heat pulses generated with the model were studied in a 2-D array of 101x101 cells with radii of 50nm each. Results show that at distances inferior to the 300 nm of the cell with thermogenic activity, temperature gradients that range between 0.3K and 1K can be achieved, depending on the values of the bifurcation parameters, gradients that are in accordance with those measured experimentally.


thermogenesis calcium transport ATP hydrolysis entropy production 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    de Meis, L., Arruda, A.P., Carvalho, D.P.: Role of sarco/endoplasmic reticulum Ca2 + -ATPase in thermogenesis. Bioscience Reports 25(3-4), 181–190 (2005)CrossRefGoogle Scholar
  2. 2.
    Meis, L.D.: Energy interconversion by the sarcoplasmic reticulum Ca2 + -ATPase: ATP hydrolysis, Ca2 +  transport, ATP synthesis and heat production. Anais da Academia Brasileira de Ciências 72(3), 365–379 (2000)CrossRefGoogle Scholar
  3. 3.
    Kjelstrup, S., de Meis, L., Bedeaux, D., Simon, J.M.: Is the Ca2 + -ATPase from sarcoplasmic reticulum also a heat pump? European Biophysics Journal 38(1), 59–67 (2008)CrossRefGoogle Scholar
  4. 4.
    Bedeaux, D., Kjelstrup, S.: The measurable heat flux that accompanies active transport by Ca2 + -ATPase. Physical Chemistry Chemical Physics 10(48), 7304–7317 (2008)CrossRefGoogle Scholar
  5. 5.
    Kjelstrup, S., Barragán, D., Bedeaux, D.: Coefficients for Active Transport and Thermogenesis of Ca2 + -ATPase Isoforms. Biophysical Journal 96(11), 4376–4386 (2009)CrossRefGoogle Scholar
  6. 6.
    Cook, G.B., Gray, P., Knapp, D.G., Scott, S.K.: Bimolecular routes to cubic autocatalysis. The Journal of Physical Chemistry 93(7), 2749–2755 (1989)CrossRefGoogle Scholar
  7. 7.
    de Groot, S.R., Mazur, P.: Non-equilibrium thermodynamics. Dover Publications (1963)Google Scholar
  8. 8.
    Kjelstrup, S., Bedeaux, D.: Non-equilibrium thermodynamics of heterogeneous systems, vol. 16. World Scientific, Singapore (2008)MATHCrossRefGoogle Scholar
  9. 9.
    Suzuki, M., Tseeb, V., Oyama, K., Ishiwata, S.: Microscopic detection of thermogenesis in a single HeLa cell. Biophysical Journal 92(6), L46–L48 (2007)Google Scholar
  10. 10.
    Yang, J.M., Yang, H., Lin, L.: Quantum dot nano thermometers reveal heterogeneous local thermogenesis in living cells. ACS nano 5(6), 5067–5071 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Julián Cerón-Figueroa
    • 1
  • Víctor Alonso López-Agudelo
    • 1
  • Daniel Barragán
    • 1
  1. 1.Escuela de Química, Facultad de CienciasUniversidad Nacional de ColombiaMedellínColombia

Personalised recommendations