Advertisement

Load Non-Proportionality in the Computational Models

  • Dariusz SkibickiEmail author
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Chapter presents various models for calculating multiaxial fatigue. Unlike many other similar comparisons, this analysis describes damage models from the point of view of the way the non-proportionality loading was taken into account. Many authors, while analysing these models, limit themselves to stating whether a given model can be applied in non-proportional loading conditions. A presumed quantitative analysis of the calculation results compares models of the same class. The authors do not analyse their proposals in relation to the solutions from other areas of fatigue or related fields such as plasticity theory. A comparison of calculation models that take into account the influence of non-proportionality depending on the type of the model as well as what stage of the calculation process this model pertains allows different approaches to be thoroughly revealed. Articles in periodicals do not provide space for a broad cross-sectional comparative analysis of different models. In order to reveal the differences, the introduction to  Chap. 4 presents a division of models into classes. This division should facilitate the comparison and an evaluation of calculation methods.

Keywords

Damage models Degree of the non-proportionality Load path Load non-proportionality measure 

References

  1. Ahmadi A, Zenner H (2005) Simulation of microcrack growth for different load sequences and comparison with experimental results. Int J Fatigue 27(8):853–861. doi: 10.1016/j.ijfatigue.2005.02.005 CrossRefzbMATHGoogle Scholar
  2. Bannantine JA, Socie DF (eds) (1991) A viariable amplitude multiaxial fatigue life prediction method, vol 10. ESIS Publication 10. Mechanical Engineering PublicationGoogle Scholar
  3. Benallal A, Marquis D (1987) Constitutive-equations for nonproportional cyclic elasto-viscoplasticity. J Eng Mater Technol Trans Asme 109(4):326–336CrossRefGoogle Scholar
  4. Benallal A, Marquis D (1988) Effects of non-proportional loadings in cyclic elasto-viscoplasticity: experimental, theoretical and numerical aspects. Eng Computations 5 (3):241–247Google Scholar
  5. Bonacuse PJ, Kalluri S (2003) Axial and torsional load-type sequencing in cumulative fatigue: low amplitude followed by high amplitude loading. Biaxial/Multiaxial Fatigue and Fracture. ESIS Publication 31. Elsevier, AmsterdamGoogle Scholar
  6. Bonte M, de Boer A, Liebregts R (2007) Determining the von Mises stress power spectral density for frequency domain fatigue analysis including out-of-phase stress components. J Sound Vib 302(1–2):379–386. doi: 10.1016/j.jsv.2006.11.025 CrossRefGoogle Scholar
  7. Borodii MV, Shukaev SM (2007) Additional cyclic strain hardening and its relation to material structure, mechanical characteristics, and lifetime. Int J Fatigue 29(6):1184–1191. doi: 10.1016/j.ijfatigue.2006.06.014 CrossRefzbMATHGoogle Scholar
  8. Brown MW, Miller KJ (1979) High-temperature low-cycle biaxial fatigue of 2 steels. Fatigue Eng Mater 1(2):217–229. doi: 10.1111/j.1460-2695.1979.tb00379.x CrossRefGoogle Scholar
  9. Calloch S, Marquis D (1997) Additional hardening due to tension-torsion nonproportional loadings: influence of the loading path shape. In: Kalluri S, Bonacuse PJ (eds) Multiaxial fatigue and deformation testing techniques, vol 1280. American Society for Testing and Materials Special Technical Publication, USA, pp 113–130. doi: 10.1520/stp16215s
  10. Calloch S, Marquis D (1999) Triaxial tension-compression tests for multiaxial cyclic plasticity. Int J Plast 15(5):521–549. doi: 10.1016/S0749-6419(99)00005-4 CrossRefGoogle Scholar
  11. Carpinteri A, Macha E, Brighenti R, Spagnoli A (1999a) Expected principal stress directions under multiaxial random loading. Part I: theoretical aspects of the weight function method. Int J Fatigue 21(1):83–88. doi: 10.1016/S0142-1123(98)00046-2 CrossRefGoogle Scholar
  12. Carpinteri A, Brighenti R, Macha E, Spagnoli A (1999b) Expected principal stress directions under multiaxial random loading. Part II: numerical simulation and experimental assessment through the weight function method. Int J Fatigue 21(1):89–96. doi: 10.1016/S0142-1123(98)00047-4 CrossRefGoogle Scholar
  13. Chaboche JL (1991) On some modifications of kinematic hardening to improve the description of Ratchetting Effects. Int J Plast 7(7):661–678. doi: 10.1016/0749-6419(91)90050-9 CrossRefGoogle Scholar
  14. Chen X, Gao Q, Sun XF (1996) Low-cycle fatigue under non-proportional loading. Fatigue Fract Eng M 19(7):839–854. doi: 10.1111/j.1460-2695.1996.tb01020.x CrossRefGoogle Scholar
  15. Chen X, Xu S, Huang D (1999) A critical plane-strain energy density criterion for multiaxial low-cycle fatigue life under non-proportional loading. Fatigue Fract Eng M 22(8):679–686. doi: 10.1046/j.1460-2695.1999.t01-1-00199.x CrossRefGoogle Scholar
  16. Chen X, Jin D, Kim KS (2006) Fatigue life prediction of type 304 stainless steel under sequential biaxial loading. Int J Fatigue 28(3):289–299. doi: 10.1016/j.ijfatigue.2005.05.003 CrossRefGoogle Scholar
  17. Cristofori A, Susmel L, Tovo R (2008) A stress invariant based criterion to estimate fatigue damage under multiaxial loading. Int J Fatigue 30(9):1646–1658. doi: 10.1016/j.ijfatigue.2007.11.006 CrossRefzbMATHGoogle Scholar
  18. Cristofori A, Benasciutti D, Tovo R (2011) A stress invariant based spectral method to estimate fatigue life under multiaxial random loading. Int J Fatigue 33(7):887–899. doi: 10.1016/j.ijfatigue.2011.01.013 CrossRefGoogle Scholar
  19. Dong PS, Wei ZG, Hong JK (2010) A path-dependent cycle counting method for variable-amplitude multi-axial loading. Int J Fatigue 32(4):720–734. doi: 10.1016/j.ijfatigue.2009.10.010 CrossRefGoogle Scholar
  20. Doquet V, Abbadi M, Bui QH, Pons A (2009) Influence of the loading path on fatigue crack growth under mixed-mode loading. Int J Fract 159(2):219–232. doi: 10.1007/s10704-009-9396-6 CrossRefGoogle Scholar
  21. Doquet V, Bui QH, Constantinescu A (2010) Plasticity and asperity-induced fatigue crack closure under mixed-mode loading. Int J Fatigue 32(10):1612–1619. doi: 10.1016/j.ijfatigue.2010.02.011 CrossRefGoogle Scholar
  22. Doring R, Hoffmeyer J, Seeger T, Vormwald M (2006) Short fatigue crack growth under nonproportional multiaxial elastic-plastic strains. Int J Fatigue 28(9):972–982. doi: 10.1016/j.ijfatigue.2005.08.012 CrossRefGoogle Scholar
  23. Duprat D, Boudet R, Davy A (1997) A simple model to predict fatigue strength with out-of-phase tension-bending and torsion stress condition. Adv Fract Res 1–6:1379–1386Google Scholar
  24. Fatemi A, Shamsaei N (2011) Multiaxial fatigue: an overview and some approximation models for life estimation. Int J Fatigue 33(8):948–958. doi: 10.1016/j.ijfatigue.2011.01.003 CrossRefGoogle Scholar
  25. Fatemi A, Socie DF (1988) A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract Eng M 11(3):149–165. doi: 10.1111/j.1460-2695.1988.tb01169.x CrossRefGoogle Scholar
  26. Fatemi A, Yang L (1998) Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials. Int J Fatigue 20(1):9–34. doi: 10.1016/S0142-1123(97)00081-9 CrossRefGoogle Scholar
  27. Findley WN (1959) A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending. J Eng Ind 301–306:39Google Scholar
  28. Francois M (2001) A plasticity model with yield surface distortion for non proportional loading. Int J Plast 17(5):703–717. doi: 10.1016/S0749-6419(00)00025-5 CrossRefzbMATHGoogle Scholar
  29. Fremy F, Pommier S, Poncelet M, Raka B, Galenne E, Courtin S, Roux J-CL (2013) Load path effect on fatigue crack propagation in I + II + III mixed mode conditions—part 1: experimental investigations. Int J Fatigue (0). doi:http://dx.doi.org/10.1016/j.ijfatigue.2013.06.002
  30. Garud YS (1981) Multiaxial fatigue—a survey of the state of the art. J Test Eval 9(3):165–178CrossRefGoogle Scholar
  31. Goncalves CA, Araujo JA, Mamiya EN (2005) Multiaxial fatigue: a stress based criterion for hard metals. Int J Fatigue 27(2):177–187. doi: 10.1016/j.ijfatigue.2004.05.006 CrossRefzbMATHGoogle Scholar
  32. Gough HJ (1950) Engineering steels under combined cyclic and static stresses. J Appl Mech T Asme 17(2):113–125Google Scholar
  33. Hassan T, Taleb L, Krishna S (2008) Influence of non-proportional loading on ratcheting responses and simulations by two recent cyclic plasticity models. Int J Plast 24(10):1863–1889. doi: 10.1016/j.ijplas.2008.04.008 CrossRefzbMATHGoogle Scholar
  34. Huang Y, Mahin SA (2010) Simulation the inelastic seismic behaviour of steel braced frames inculuding the effects. Pacific Earthquake Engineering Research Center Collage of Engineering, University of California, BerkeleyGoogle Scholar
  35. Itoh T, Miyazaki T (2003) A damage model for estimating low cycle fatigue lives under nonproportional multiaxial loading. ESIS Publ 31:423–439Google Scholar
  36. Itoh T, Sakane M, Ohnami M, Socie DF (1995) Non-proportional low cycle fatigue criterion for type-304 stainless-steel. J Eng Mater Technol Trans Asme 117(3):285–292. doi: 10.1115/1.2804541 CrossRefGoogle Scholar
  37. Itoh T, Sakane M, Hata T, Hamada N (2006) A design procedure for assessing low cycle fatigue life under proportional and non-proportional loading. Int J Fatigue 28(5–6):459–466. doi: 10.1016/j.ijfatigue.2005.08.007 CrossRefzbMATHGoogle Scholar
  38. Itoh T, Ozaki T, Amaya T, Sakane M (2007) Determination of stress and strain ranges under non-proportional cyclic loading. In: Proceedings of the 8th international conference on multiaxial fatigue and fracture, Sheffield, UK, p S7B-3Google Scholar
  39. Jiang Y, Kurath P (1996a) A theoretical evaluation of plasticity hardening algorithms for nonproportional loadings. Acta Mech 118(1–4):213–234. doi: 10.1007/bf01410518 CrossRefzbMATHGoogle Scholar
  40. Jiang YY, Kurath P (1996b) Characteristics of the Armstrong-Frederick type plasticity models. Int J Plast 12(3):387–415. doi: 10.1016/s0749-6419(96)00013-7 CrossRefzbMATHGoogle Scholar
  41. Jiang YY, Kurath P (1997) Nonproportional cyclic deformation: critical experiments and analytical modeling. Int J Plast 13(8–9):743–763. doi: 10.1016/S0749-6419(97)00030-2 CrossRefzbMATHGoogle Scholar
  42. Jiang Y, Sehitoglu H (1996) Modeling of cyclic ratchetting plasticity. 1. Development of constitutive relations. J Appl Mech T Asme 63(3):720–725. doi: 10.1115/1.2823355 CrossRefzbMATHGoogle Scholar
  43. Kanazawa K, Miller KJ, Brown MW (1977) Low-cycle fatigue under out-of-phase loading conditions. J Eng Mater Technol Trans Asme 99(3):222–228CrossRefGoogle Scholar
  44. Kanazawa K, Miller KJ, Brown MW (1979) Cyclic deformation of 1-percent Cr-Mo-V steel under out-of-phase loads. Fatigue Eng Mater 2(2):217–228. doi: 10.1111/j.1460-2695.1979.tb01357.x CrossRefGoogle Scholar
  45. Karolczuk A (2006) Plastic strains and the macroscopic critical plane orientations under combined bending and torsion with constant and variable amplitudes. Eng Fract Mech 73(12):1629–1652. doi: 10.1016/j.engfracmech.2006.02.005 CrossRefGoogle Scholar
  46. Karolczuk A (2008) Non-local area approach to fatigue life evaluation under combined reversed bending and torsion. Int J Fatigue 30(10–11):1985–1996. doi: 10.1016/j.ijfatigue.2008.01.007 CrossRefzbMATHGoogle Scholar
  47. Karolczuk A, Macha E (2005) A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials. Int J Fract 134(3–4):267–304. doi: 10.1007/s10704-005-1088-2 CrossRefzbMATHGoogle Scholar
  48. Lagoda T, Macha E, Bedkowski W (1999) A critical plane approach based on energy concepts: application to biaxial random tension-compression high-cycle fatigue regime. Int J Fatigue 21(5):431–443. doi: 10.1016/S0142-1123(99)00003-1 CrossRefGoogle Scholar
  49. Lagoda T, Macha E, Nieslony A (2005) Fatigue life calculation by means of the cycle counting and spectral methods under multiaxial random loading. Fatigue Fract Eng M 28(4):409–420. doi: 10.1111/j.1460-2695.2005.00877.x CrossRefGoogle Scholar
  50. Langer BF (ed) (1971) Pressure vessel engineering technology. Elsevier Publishing Company Limited, AmsterdamGoogle Scholar
  51. Lee SB (1985) A criterion for fully reversed out-of-phase torsion and bending. ASTM Int 16. doi: 10.1520/STP36242S
  52. Lee YL, Chiang YJ (1991) Fatigue predictions for components under biaxial reversed loading. J Test Eval 19(5):9. doi: 10.1520/JTE12587J Google Scholar
  53. Lei Y (2005) J-integral evaluation for cases involving non-proportional stressing. Eng Fract Mech 72(4):577–596. doi: 10.1016/j.engfracmech.2004.04.003 CrossRefGoogle Scholar
  54. Lemaitre J, Desmorat R (2005) Engineering damage mechanics ductile, creep, fatigue and brittle failures. Springer, Berlin, Heidelberg. doi: 10.1007/b138882
  55. Li B, Reis L, de Freitas M (2009) Comparative study of multiaxial fatigue damage models for ductile structural steels and brittle materials. Int J Fatigue 31(11–12):1895–1906. doi:http://dx.doi.org/10.1016/j.ijfatigue.2009.01.006
  56. Liu KC, Wang JA (2001) An energy method for predicting fatigue life, crack orientation, and crack growth under multiaxial loading conditions. Int J Fatigue 23:S129–S134CrossRefGoogle Scholar
  57. Liu Y, Gao Q, Kang G (2011) A damage-coupled multi-axial time-dependent low cycle fatigue failure model for SS304 stainless steel at high temperature. Acta Metallurgica Sinica-English Letters 24(2):169–174Google Scholar
  58. LS-DYNA (2012) Keyword user’s manual. Version 971 R6.1.0 edn. Livermore Software Technology Corporation (LSTC)Google Scholar
  59. Macha E (1989) Simulation investigations of the position of fatigue fracture plane in materials with biaxial loads. Materialwiss Werkst 20(4):132–136. doi: 10.1002/mawe.19890200405 CrossRefGoogle Scholar
  60. Macha E (1991) Generalized fatigue criterion of maximum shear and normal strains on the fracture plane for materials under multiaxial random loadings. Materialwiss Werkst 22(6):203–210. doi: 10.1002/mawe.19910220605 CrossRefGoogle Scholar
  61. Macha E (1996) Spectral method of fatigue life calculation under random multiaxial loading. Mater Sci 32(3):339–349. doi: 10.1007/bf02539171
  62. Macha E, Sonsino CM (1999) Energy criteria of multiaxial fatigue failure. Fatigue Fract Eng M 22(12):1053–1070CrossRefGoogle Scholar
  63. Mamiya EN, Araujo JA, Castro FC (2009) Prismatic hull: a new measure of shear stress amplitude in multiaxial high cycle fatigue. Int J Fatigue 31(7):1144–1153. doi: 10.1016/j.ijfatigue.2008.12.010 CrossRefzbMATHGoogle Scholar
  64. Mcdiarmid DL (1991) A general criterion for high cycle multiaxial fatigue failure. Fatigue Fract Eng M 14(4):429–453. doi: 10.1111/j.1460-2695.1991.tb00673.x CrossRefGoogle Scholar
  65. Meggiolaro MA, de Castro JTP (2012) An improved multiaxial rainflow algorithm for non-proportional stress or strain histories—part I: enclosing surface methods. Int J Fatigue 42:217–226. doi: 10.1016/j.ijfatigue.2011.10.014 CrossRefGoogle Scholar
  66. Morel F (1998) A fatigue life prediction method based on a mesoscopic approach in constant amplitude multiaxial loading. Fatigue Fract Eng M 21(3):241–256. doi: 10.1046/j.1460-2695.1998.00452.x CrossRefMathSciNetGoogle Scholar
  67. Morel F (2000) A critical plane approach for life prediction of high cycle fatigue under multiaxial variable amplitude loading. Int J Fatigue 22(2):101–119. doi: 10.1016/S0142-1123(99)00118-8 CrossRefGoogle Scholar
  68. Morel F, Bastard M (2003) A multiaxial life prediction method applied to a sequence of non similar loading in high cycle fatigue. Int J Fatigue 25(9–11):1007–1012. doi: 10.1016/S0142-1123(03)00113-0 CrossRefGoogle Scholar
  69. Nguyen N, Bacher-Hoechst M, Sonsino CM (2012) Spectral fatigue life estimation for components under multiaxial random loading. Revue De Metallurgie-Cahiers D Informations Techniques 109 (3):149–156. doi: 10.1051/metal/2012014
  70. Niazi M, Wisselink H, Meinders T, ten Horn C (2010) Implementation of an anisotropic damage material model using general second order damage tensor. Steel Res Int 81(9):1396–1399Google Scholar
  71. Nieslony A (2010) Comparison of some selected multiaxial fatigue failure criteria dedicated for spectral method. J Theor Appl Mech 48(1):233–254Google Scholar
  72. Niesłony A, Macha E (2007) Spectral method in multiaxial random fatigue. In: Lecture notes in applied and computational mechanics, vol 33. Springer, Berlin, Heidelberg. doi: 10.1007/978-3-540-73823-7
  73. Nishihara T, Kawamoto M (1945) The strength of metals under combined alternating bending and torsion with phase difference. Mem Coll Eng 11:85–112 Kyoto Imperial UniversityGoogle Scholar
  74. Nisihara T, Kawamoto M (1945) The strength of metals under combined bending and twisting with phase difference. Mem Coll Eng 9:85–112 Kyoto Imperial UniversityGoogle Scholar
  75. Nitta A, Ogata T, Kuwabara K (1989) Fracture mechanisms and life assessment under high-strain biaxial cyclic loading of type-304 stainless-steel. Fatigue Fract Eng M 12(2):77–92. doi: 10.1111/j.1460-2695.1989.tb00515.x CrossRefGoogle Scholar
  76. Papadopoulos I (1998) Critical plane approaches in high-cycle fatigue: on the definition of the amplitude and mean value of the smear stress acting on the critical plane. Fatigue Fract Eng M 21(3):269–285. doi: 10.1046/j.1460-2695.1998.00459.x CrossRefGoogle Scholar
  77. Papadopoulos IV (2001) Long life fatigue under multiaxial loading. Int J Fatigue 23(10):839–849. doi: 10.1016/S0142-1123(01)00059-7 CrossRefGoogle Scholar
  78. Papadopoulos IV, Davoli P, Gorla C, Filippini M, Bernasconi A (1997) A comparative study of multiaxial high-cycle fatigue criteria for metals. Int J Fatigue 19(3):219–235. doi: 10.1016/S0142-1123(96)00064-3 CrossRefGoogle Scholar
  79. Pitoiset X, Preumont A (2000) Spectral methods for multiaxial random fatigue analysis of metallic structures. Int J Fatigue 22(7):541–550. doi: 10.1016/s0142-1123(00)00038-4 CrossRefGoogle Scholar
  80. Reddy SC, Fatemi A (1992) Small crack-growth in multiaxial fatigue. Am Soc Test Mater 1122:276–298. doi: 10.1520/Stp24164s Google Scholar
  81. Rozumek D, Macha E (2009) A survey of failure criteria and parameters in mixed-mode fatigue crack growth. Mater Sci 45(2):190–210. doi: 10.1007/s11003-009-9179-2
  82. Rozumek D, Marciniak Z (2011) Fatigue crack growth in AlCu4Mg1 under nonproportional bending-with-torsion loading. Mater Sci 46(5):685–694Google Scholar
  83. Shamsaei N, Fatemi A (2010) Effect of microstructure and hardness on non-proportional cyclic hardening coefficient and predictions. Mat Sci Eng A Struct 527(12):3015–3024. doi: 10.1016/j.msea.2010.01.056 CrossRefGoogle Scholar
  84. Shamsaei N, Fatemi A, Socie DF (2010a) Multiaxial cyclic deformation and non-proportional hardening employing discriminating load paths. Int J Plast 26(12):1680–1701. doi: 10.1016/j.ijplas.2010.02.006 CrossRefzbMATHGoogle Scholar
  85. Skibicki D (2007) Experimental verification of fatigue loading nonproportionality model. In: Proceedings of the 8th international conference on multiaxial fatigue and fracture, Sheffield, UK, pp S7B-1Google Scholar
  86. Skibicki D, Sempruch J (2004) Use of a load non-proportionality measure in fatigue under out-of-phase combined bending and torsion. Fatigue Fract Eng M 27(5):369–377. doi: 10.1111/j.1460-2695.2004.00757.x CrossRefGoogle Scholar
  87. Smith KN, Watson P, Topper TH (1970) Stress–strain function for fatigue of metals. J Mater 5(4):767Google Scholar
  88. Socie D (1987) Multiaxial fatigue damage models. J Eng Mater Technol Trans Asme 109(4):293–298CrossRefGoogle Scholar
  89. Socie DF, Marquis GB (2000) Multiaxial fatigue. Society of Automotive Engineers, WarrendaleGoogle Scholar
  90. Sonsino CM (1995) Multiaxial fatigue of welded-joints under in-phase and out-of-phase local strains and stresses. Int J Fatigue 17(1):55–70. doi: 10.1016/0142-1123(95)93051-3 CrossRefGoogle Scholar
  91. Sonsino CM, Kiippers M, Zenner H, Yousefi-Hashtyani F (2005) Present limitations in the assessment of components under multiaxial service loading. Materialprufung 47(5):255–259Google Scholar
  92. Tanaka E (1994) A nonproportionality parameter and a cyclic viscoplastic constitutive model taking into account amplitude dependences and memory effects of isotropic hardening. Eur J Mech A Solid 13(2):155–173zbMATHGoogle Scholar
  93. Wang CH, Brown MW (1996) Life prediction techniques for variable amplitude multiaxial fatigue. 1. Theories. J Eng Mater Technol Trans Asme 118(3):367–370. doi: 10.1115/1.2806821 CrossRefGoogle Scholar
  94. Weber B, Ngargueudedjim K, Fotsing BS, Robert JL (2006) On the efficiency of the integral approach in multiaxial fatigue. Materialprufung 48(4):156–159Google Scholar
  95. Wu M, Itoh T, Shimizu Y, Nakamura H, Takanashi M (2012) Low cycle fatigue life of Ti-6Al-4 V alloy under non-proportional loading. Int J Fatigue 44:14–20. doi: 10.1016/j.ijfatigue.2012.06.006 CrossRefGoogle Scholar
  96. Xiao L, Kuang ZB (1996) Biaxial path dependence of macroscopic response and microscopic dislocation substructure in type 302 stainless steel. Acta Mater 44(8):3059–3067. doi: 10.1016/1359-6454(95)00441-6 CrossRefGoogle Scholar
  97. Zenner H, Simburger A, Liu J (2000a) On the fatigue limit of ductile metals under complex multiaxial loading (vol 22, p 137, 2000). Int J Fatigue 22(9):821–821. doi: 10.1016/S0142-1123(00)00060-8
  98. Zhang JX, Jiang YY (2008) Constitutive modeling of cyclic plasticity deformation of a pure polycrystalline copper. Int J Plast 24(10):1890–1915. doi: 10.1016/j.ijplas.2008.02.008 CrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringUniversity of Technology and Life ScienceBydgoszczPoland

Personalised recommendations