Advertisement

The Phenomena of Non-Proportionality in Loading Fatigue

  • Dariusz SkibickiEmail author
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Chapter presents the influence of non-proportionality on various physical phenomena that accompany the fatigue process, and they include the formation of specific properties in the microstructure of metals, the resulting strengthening of material, the initiation and development of cracks, and last but not least, the influence of non-proportionality on important exploitation features of machine parts as well as fatigue life and strength.

Keywords

Dislocations structures Development of cracks Fatigue life and strength Additional cyclic hardening 

References

  1. Ahmadi A, Zenner H (2005) Simulation of microcrack growth for different load sequences and comparison with experimental results. Int J Fatigue 27(8):853–861. doi: 10.1016/j.ijfatigue.2005.02.005 CrossRefzbMATHGoogle Scholar
  2. Bocher L, Delobelle P, Robinet P, Feaugas X (2001) Mechanical and microstructural investigations of an austenitic stainless steel under non-proportional loadings in tension-torsion-internal and external pressure. Int J Plast 17(11):1491–1530. doi: 10.1016/S0749-6419(01)00013-4 CrossRefzbMATHGoogle Scholar
  3. Bonacuse PJ, Kalluri S (2003) Axial and torsional load-type sequencing in cumulative fatigue: low amplitude followed by high amplitude loading. In: Biaxial/Multiaxial fatigue and fracture. ESIS Publication 31. Elsevier, AmsterdamGoogle Scholar
  4. Carpinteri A, Karolczuk A, Macha E, Vantadori S (2002) Expected position of the fatigue fracture plane by using the weighted mean principal Euler angles. Int J Fract 115(1):87–99. doi: 10.1023/A:1015737800962 CrossRefGoogle Scholar
  5. Chen X, Jin D, Kim KS (2006) Fatigue life prediction of type 304 stainless steel under sequential biaxial loading. Int J Fatigue 28(3):289–299. doi: 10.1016/j.ijfatigue.2005.05.003 CrossRefGoogle Scholar
  6. Colak OU (2004) A viscoplasticity theory applied to proportional and non-proportional cyclic loading at small strains. Int J Plast 20(8–9):1387–1401. doi: 10.1016/j.ijplas.2003.07.002 CrossRefzbMATHGoogle Scholar
  7. Ellyin F, Golos K, Xia Z (1991) In-phase and out-of-phase multiaxial fatigue. J Eng Mater Technol-Trans ASME 113(1):112–118. doi: 10.1115/1.2903365 CrossRefGoogle Scholar
  8. Fatemi A, Shamsaei N (2011) Multiaxial fatigue: an overview and some approximation models for life estimation. Int J Fatigue 33(8):948–958. doi: 10.1016/j.ijfatigue.2011.01.003 CrossRefGoogle Scholar
  9. Feng ML, Ding F, Jiang YY (2006) A study of loading path influence on fatigue crack growth under combined loading. Int J Fatigue 28(1):19–27. doi: 10.1016/j.ijfatigue.2005.04.002 CrossRefGoogle Scholar
  10. Fremy F, Pommier S, Poncelet M, Raka B, Galenne E, Courtin S, Roux J-CL (2013) Load path effect on fatigue crack propagation in I + II + III mixed mode conditions—Part 1: experimental investigations. Int J Fatigue (0). doi:http://dx.doi.org/10.1016/j.ijfatigue.2013.06.002
  11. Hassan T, Taleb L, Krishna S (2008) Influence of non-proportional loading on ratcheting responses and simulations by two recent cyclic plasticity models. Int J Plast 24(10):1863–1889. doi: 10.1016/j.ijplas.2008.04.008 CrossRefzbMATHGoogle Scholar
  12. Jiao F, Osterle W, Portella PD, Ziebs J (1995) Biaxial path-dependence of low-cycle fatigue behavior and microstructure of Alloy 800-H at room-temperature. Mater Sci Eng A-Struct 196(1–2):19–24. doi: 10.1016/0921-5093(94)09690-2 CrossRefGoogle Scholar
  13. Kanazawa K, Miller KJ, Brown MW (1977) Low-cycle fatigue under out-of-phase loading conditions. J Eng Mater Technol-Trans ASME 99(3):222–228CrossRefGoogle Scholar
  14. Karolczuk A (2006) Plastic strains and the macroscopic critical plane orientations under combined bending and torsion with constant and variable amplitudes. Eng Fract Mech 73(12):1629–1652. doi: 10.1016/j.engfracmech.2006.02.005 CrossRefGoogle Scholar
  15. Kida S, Itoh T, Sakane M, Ohnami M, Socie DF (1997) Dislocation structure and non-proportional hardening of Type 304 stainless steel. Fatigue Fract Eng Mater Struct 20(10):1375–1386. doi: 10.1111/j.1460-2695.1997.tb01496.x CrossRefGoogle Scholar
  16. Kocanda S (1978) Fatigue failure of metals. Springer, NetherlandsCrossRefGoogle Scholar
  17. Li J, Zhang ZP, Sun QA, Li CW (2011) Multiaxial fatigue life prediction for various metallic materials based on the critical plane approach. Int J Fatigue 33(2):90–101. doi: 10.1016/j.ijfatigue.2010.07.003 CrossRefzbMATHGoogle Scholar
  18. Lipski A, Skibicki D (2012) Variations of the specimen temperature depending on the pattern of the multiaxial load—Preliminary research. Fatigue Fail Fract Mech 726:162–168. doi: 10.4028/www.scientific.net/MSF.726.162 Google Scholar
  19. Little RE (1969) A note on shear stress criterion for fatigue failure under combined stress. Aeronaut Q 20:57Google Scholar
  20. Liu KC, Wang JA (2001) An energy method for predicting fatigue life, crack orientation, and crack growth under multiaxial loading conditions. Int J Fatigue 23:129–134CrossRefGoogle Scholar
  21. Mcdiarmid DL (1986) Fatigue under out-of-phase bending and torsion. Fatigue Fract Eng Mater Struct 9(6):457–475CrossRefGoogle Scholar
  22. Mcdowell DL, Stahl DR, Stock SR, Antolovich SD (1988) Biaxial path dependence of deformation substructure of Type-304 Stainless-Steel. Metall Trans A 19(5):1277–1293. doi: 10.1007/Bf02662589 CrossRefGoogle Scholar
  23. Nakamura H, Takanashi M, Itoh T, Wu M, Shimizu Y (2011) Fatigue crack initiation and growth behavior of Ti-6Al-4V under non-proportional multiaxial loading. Int J Fatigue 33(7):842–848. doi: 10.1016/j.ijfatigue.2010.12.013 CrossRefGoogle Scholar
  24. Nishihara T, Kawamoto M (1945) The strength of metals under combined alternating bending and torsion with phase difference. Mem Coll Eng, Kyoto Imperial Univ 11:85–112Google Scholar
  25. Nishino S, Hamada N, Sakane M, Ohnami M, Matsumura N, Tokizane M (1986) Microstructural study of cyclic strain-hardening behavior in biaxial stress states at elevated-temperature. Fatigue Fract Eng Mater Struct 9(1):65–77. doi: 10.1111/j.1460-2695.1986.tb01212.x CrossRefGoogle Scholar
  26. Ohkawa I, Takahashi H, Moriwaki M, Misumi M (1997) A study on fatigue crack growth under out-of-phase combined loadings. Fatigue Fract Eng Mater Struct 20(6):929–940. doi: 10.1111/j.1460-2695.1997.tb01536.x CrossRefGoogle Scholar
  27. Papadopoulos IV, Davoli P, Gorla C, Filippini M, Bernasconi A (1997) A comparative study of multiaxial high-cycle fatigue criteria for metals. Int J Fatigue 19(3):219–235. doi: 10.1016/S0142-1123(96)00064-3 CrossRefGoogle Scholar
  28. Qian J, Fatemi A (1996) Mixed mode fatigue crack growth: a literature survey. Eng Fract Mech 55(6):969–990. doi: 10.1016/S0013-7944(96)00071-9 CrossRefGoogle Scholar
  29. Rios ER, Andrews RM, Brown MW, Miller KJ (1989) Out-of-phase cyclic deformation and fatigue fracture studies on 316 stainless steel. In: Biaxial and multiaxial fatigue, EGF 3. Mechanical Engineering PublicationsGoogle Scholar
  30. Rozumek D, Marciniak Z (2012) The investigation of crack growth in specimens with rectangular cross-sections under out-of-phase bending and torsional loading. Int J Fatigue 39:81–87. doi: 10.1016/j.ijfatigue.2011.02.013 CrossRefGoogle Scholar
  31. Shamsaei N, Fatemi A (2009) Effect of hardness on multiaxial fatigue behaviour and some simple approximations for steels. Fatigue Fract Eng Mater Struct 32(8):631–646. doi: 10.1111/j.1460-2695.2009.01369.x CrossRefGoogle Scholar
  32. Shamsaei N, Fatemi A, Socie DF (2010a) Multiaxial cyclic deformation and non-proportional hardening employing discriminating load paths. Int J Plast 26(12):1680–1701. doi: 10.1016/j.ijplas.2010.02.006 CrossRefzbMATHGoogle Scholar
  33. Shamsaei N, Gladskyi M, Panasovskyi K, Shukaev S, Fatemi A (2010b) Multiaxial fatigue of titanium including step loading and load path alteration and sequence effects. Int J Fatigue 32(11):1862–1874. doi: 10.1016/j.ijfatigue.2010.05.006 CrossRefGoogle Scholar
  34. Simburger A (1975) Festigkeitsverhalten zaher Werkstoffe bei einer mehrachsigen, phasenverschobenen Schwingbeanspruchung mit korperfesten und veranderlichen Hauptspannungsrichtungen. Bericht nr. FB-121. Laboratorium fur Betriebsfestigkeit, DarmstadtGoogle Scholar
  35. Skibicki D, Dymski S (2010) The influence of fatigue loading on the microstructure of an austenitic stainless steel. Mater Test-Mater Compon Technol Appl 52(11–12):787–794Google Scholar
  36. Skibicki D, Sempruch J, Pejkowski L (2012) Steel X2CrNiMo17-12-2 testing for uniaxial, proportional and non-proportional loads as delivered and in the annealed condition. Fatigue Fail Fract Mech 726:171–180. doi: 10.4028/www.scientific.net/MSF.726.171 Google Scholar
  37. Socie DF (1996) Fatigue damage simulation models for multiaxial loading. In: Proceedings of the sixth international fatigue congress. Pergamon, New York, pp 967–976Google Scholar
  38. Socie DF, Marquis GB (2000) Multiaxial fatigue. Society of Automotive EngineersGoogle Scholar
  39. Sonsino CM (1983) Schwingfestigkeitsverhalten von Sinterstahl unter kombinierten mehrachsiger phasegleichen und phasenverschobenen Beanspruchungszustande. Bericht Nr FB-168. LBF DarmstatGoogle Scholar
  40. Verreman Y, Guo H (2007) High-cycle fatigue mechanisms in 1045 steel under non-proportional axial-torsional loading. Fatigue Fract Eng Mater Struct 30(10):932–946. doi: 10.1111/j.1460-2695.2007.01164.x CrossRefGoogle Scholar
  41. Xiao L, Kuang ZB (1996) Biaxial path dependence of macroscopic response and microscopic dislocation substructure in type 302 stainless steel. Acta Mater 44(8):3059–3067. doi: 10.1016/1359-6454(95)00441-6 CrossRefGoogle Scholar
  42. Xiao L, Umakoshi Y, Sun J (2000) Biaxial low cycle fatigue properties and dislocation substructures of zircaloy-4 under in-phase and out-of-phase loading. Mater Sci Eng A-Struct 292(1):40–48. doi: 10.1016/S0921-5093(00)01005-4 CrossRefGoogle Scholar
  43. Zenner H, Simburger A, Liu JP (2000) On the fatigue limit of ductile metals under complex multiaxial loading. Int J Fatigue 22(2):137–145. doi: 10.1016/S0142-1123(99)00107-3 CrossRefGoogle Scholar
  44. Zhang JX, Jiang YY (2005) An experimental investigation on cyclic plastic deformation and substructures of polycrystalline copper. Int J Plast 21(11):2191–2211. doi: 10.1016/j.ijplas.2005.02.004 CrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringUniversity of Technology and Life ScienceBydgoszczPoland

Personalised recommendations