Self-Avoiding Hamiltonian Walks Counting in Parallel Processing Mode

  • Igor Ševo
  • Sreten Lekić
  • Mihajlo Savić
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 2)


We have developed a program for counting self-avoiding Hamiltonian walks to run on multiple processors in a parallel mode. We study Hamiltonian walks (HWs) on the family of two-dimensional modified Sierpinski gasket fractals, as a simple model for compact polymers in nonhomogeneous media in two dimensions. We apply an exact recursive method which allows for explicit enumeration of extremely long Hamiltonian walks of different types: closed and open, with end-points anywhere in the lattice, or with one or both ends fixed at the corner sites. The leading term n is characterized by the value of the connectivity constant 1, which depends on fractal type, but not on the type of HW.


hamiltonian walks fractal parallel processing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vanderzande, C.: Lattice Models of Polymers. Cambridge University Press (1998)Google Scholar
  2. 2.
    Madras, N., Slade, G.: The Self Avoiding Walk. Birkäuser (1993)Google Scholar
  3. 3.
    Kondev, J., Jacobsen, J.L.: Phys. Rev. Lett. 81, 2922 (1998)Google Scholar
  4. 4.
    Duplantier, B., David, F.: J. Stat. Phys. 51, 327 (1988)Google Scholar
  5. 5.
    Owczarek, A.L., Prellberg, T., Brak, R.: Phys. Rev. Lett. 70, 951 (1993)Google Scholar
  6. 6.
    Stajić, J., Elezović-Hadžić, S.: J. Phys. A: Math. Gen. 38, 5677 (2005)Google Scholar
  7. 7.
    de Gennes, P.G.: Scaling Concepts in Polymer Physics. Cornell University Press (1979)Google Scholar
  8. 8.
    Elezović-Hadžić, S., Marčetić, D., Maletić, S.: Phys. Rev. E 76, 011107 (2007)Google Scholar
  9. 9.
    Given, J.A., Mandelbrot, B.B.: J. Phys. A: Math. Gen. 16, L565 (1983)Google Scholar
  10. 10.
    Dhar, D., Singh, Y.: Statistics of Polymers in Random Media. World Scientific, Singapore (2005)Google Scholar
  11. 11.
    Bradley, R.M.: J. Phys. A: Math. Gen. 22, L19 (1989)Google Scholar
  12. 12.
    Orland, H., Itzykson, C., de Dominicis, C.: J. Physique 46, L353 (1985)Google Scholar
  13. 13.
  14. 14.
    Balaz, A., Prnjat, O., Vudragovic, D., Slavnic, V., Liabotis, I., Atanassov, E., Jakimovski, B., Savic, M.: J. Grid Comput. 9, 135 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Igor Ševo
    • 1
  • Sreten Lekić
    • 2
  • Mihajlo Savić
    • 1
  1. 1.Faculty of Electrical EngineeringUniversity of Banja LukaBanja LukaBosnia and Herzegovina
  2. 2.Faculty of Natural Sciences and MathematicsUniversity of Banja LukaBanja LukaBosnia and Herzegovina

Personalised recommendations