Advertisement

Using Parallel Computing to Calculate Static Interquark Potential in LQCD

  • Dafina Xhako
  • Rudina Zeqirllari
  • Artan Boriçi
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 2)

Abstract

Lattice Quantum Chromodynamics (LQCD) is an algorithmic formulation of QCD, the mathematical model that describes quarks and their interactions. Computations in LQCD are typically very expensive and run on dedicated supercomputers and large computer clusters for many months. In this paper the calculations are performed in one of the clusters for supercomputing of HP-SEE (High-Performance Computing Infrastructure for South East Europe’s Research Communities) project, that is located in Bulgaria (BG HPC). We use parallel computing with FermiQCD software, to determine the static quark-antiquark potential. In LQCD the static quark-antiquark potential can be derived from the Wilson loops. The standard method uses rectangular Wilson loops, while we test volume Wilson loops, using simulations with SU(3) gauge field configuration for different values of coupling constant and for different lattice sizes. The calculations are made for 100 statistically independent configurations, of gauge fields of the lattice.

Keywords

FermiQCD software lattice parallel computing quark-antiquark potential string tension Wilson loops 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wilson, K.G.: Phys. Rev. D 10, 1445 (1974)Google Scholar
  2. 2.
    Gupta, R.: Introduction to Lattice QCD. Lectures given at the LXVIII Les Houches Summer “School Probing the Standard Model of Particle Interactions”, July 28-September 5, 150 pages, arXiv:hep-lat/9807028 (1997)Google Scholar
  3. 3.
    Gattringer, C., Lang, B.C.: Quantum Chromodynamics on the Lattice, 343 pages. Springer (2009) ISBN: 3642018491Google Scholar
  4. 4.
    Creutz, M.: Quarks, gluons and lattices. Cambridge Univ. Press, Cambridge (1983)Google Scholar
  5. 5.
    Creutz, M.: Phys. Rev. D 47, 661 (1993)Google Scholar
  6. 6.
    Schilling, K., Bali, G.S.: Int. J. Mod. Phys. C 4, 1167–1177 (1993)Google Scholar
  7. 7.
    Deldar, S.: Phys. Rev. D 62, 34509 (2000)Google Scholar
  8. 8.
    Bali, G.: Phys. Rev. D 62, 114503 (2000)Google Scholar
  9. 9.
    Parisi, G., Petronzio, R., Rapuano, F.: Phys. Lett. B 128, 418 (1983)Google Scholar
  10. 10.
    Di Pierro, M.: Matrix Distributed Processing and FermiQCD. In: Proceedings of the Workshop on Advanced Computing and Analysis Techniques, Fermilab, Batavia, IL 60510, October 16-20. Fermi National Accelerator Laboratory, USA (2000) arXiv:hep-lat/0011083Google Scholar
  11. 11.
    Di Pierro, M.: FermiQCD: A tool kit for parallel lattice QCD applications. Nucl. Phys. B. Proc. Suppl. 106, 1034–1036 (2002) arXiv:hep-lat/0110116Google Scholar
  12. 12.
    Wilson, K.G.: Confinement of Quarks. Phys. Rev. D 10, 2445–2459 (1974)CrossRefGoogle Scholar
  13. 13.
    Bernard, C., et al.: MILC Collaboration, Quenched hadron spectroscopy with improved staggered quark action. Phys. Rev. D 58, 014503 (1998)Google Scholar
  14. 14.
    Kaplan, D.B.: A Method for simulating chiral fermions on the lattice. Phys. Lett. B 288(3), 342–347 (1992)MathSciNetGoogle Scholar
  15. 15.
  16. 16.
    Guagnelli, M., Sommer, R., Witti, H.: Precision computation of a low energy reference scale in quenched lattice QCD. Nucl. Phys. B 535, 389–402 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dafina Xhako
    • 1
  • Rudina Zeqirllari
    • 2
  • Artan Boriçi
    • 2
  1. 1.Department of Engineering Science, Faculty of Professional Studies“Aleksander Moisiu” UniversityDurresAlbania
  2. 2.Department of Physics, Faculty of Natural SciencesUniversity of TiranaTiranaAlbania

Personalised recommendations