Skip to main content

Part of the book series: Modeling and Optimization in Science and Technologies ((MOST,volume 2))

Abstract

We investigate by means of symbolic computations the emergence of density waves in cigar-shaped dipolar Bose-Einstein condensates and derive a series of approximate dispersion relations which exhibit the roton-maxon structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pethick, C.J., Smith, H.: Bose-Einstein Condensation in Dilute Gases. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  2. Kevrekidis, P.G., Frantzeskakis, D.J., Carretero-González, R. (eds.): Emergent Nonlinear Phenomena in Bose-Einstein Condensates. Springer, New York (2008)

    MATH  Google Scholar 

  3. Vidanovic, I., Balaz, A., Al-Jibbouri, H., Pelster, A.: Nonlinear Bose-Einstein-condensate dynamics induced by a harmonic modulation of the s-wave scattering length. Phys. Rev. A 84, 013618 (2011)

    Google Scholar 

  4. Balaz, A., Nicolin, A.I.: Faraday waves in binary nonmiscible Bose-Einstein condensates. Phys. Rev. A 85, 023613 (2012)

    Google Scholar 

  5. Vudragovic, D., Vidanovic, I., Balaz, A., Muruganandam, P., Adhikari, S.K.: C programs for solving the time-dependent Gross–Pitaevskii equation in a fully anisotropic trap. Comp. Phys. Comm. 183, 2021 (2012)

    Article  Google Scholar 

  6. Vidanovic, I., Bogojevic, A., Belic, A.: Properties of quantum systems via diagonalization of transition amplitudes. I. Discretization effects. Phys. Rev. E 80, 066705 (2009)

    Google Scholar 

  7. Vidanovic, I., Bogojevic, A., Balaz, A., Belic, A.: Properties of quantum systems via diagonalization of transition amplitudes. II. Systematic improvements of short-time propagation. Phys. Rev. E 80, 066706 (2009)

    Google Scholar 

  8. Balaz, A., Vidanovic, I., Bogojevic, A., Belic, A., Pelster, A.: Ultra-fast converging path-integral approach for rotating ideal Bose-Einstein condensates. Phys. Lett. A 374, 1539 (2010)

    Article  MATH  Google Scholar 

  9. Balaz, A., Vidanovic, I., Bogojevic, A., Belic, A., Pelster, A.: Fast converging path integrals for time-dependent potentials: I. Recursive calculation of short-time expansion of the propagator. J. Stat. Mech. P03004 (2011)

    Google Scholar 

  10. Balaz, A., Vidanovic, I., Bogojevic, A., Belic, A., Pelster, A.: Fast converging path integrals for time-dependent potentials: II. Generalization to many-body systems and real-time formalism. J. Stat. Mech. P03005 (2011)

    Google Scholar 

  11. Greismaier, A., Werner, J., Hensler, S., Stuhler, J., Pfau, T.: Bose-Einstein condensation of chromium. Phys. Rev. Lett. 94, 160401 (2005)

    Article  Google Scholar 

  12. Lu, M., Burdick, M.Q., Youn, S.H., Lev, B.L.: Strongly dipolar Bose-Einstein condensate of dysprosium. Phys. Rev. Lett. 107, 190401 (2011)

    Article  Google Scholar 

  13. Santos, L., Shlyapnikov, G.V., Lewenstein, M.: Roton-maxon spectrum and stability of trapped dipolar Bose-Einstein condensates. Phys. Rev. Lett. 90, 250403 (2003)

    Article  Google Scholar 

  14. Pérez-García, V.M., Michinel, H., Cirac, J.I., Lewenstein, M., Zoller, P.: Low Energy Excitations of a Bose-Einstein Condensate: A Time-Dependent Variational Analysis. Phys. Rev. Lett. 77, 5320 (1996)

    Article  Google Scholar 

  15. Yi, S., You, L.: Trapped condensates of atoms with dipole interactions. Phys. Rev. A 63, 053607 (2001)

    Google Scholar 

  16. Nath, R., Santos, L.: Faraday patterns in two-dimensional dipolar Bose-Einstein condensates. Phys. Rev. A 81, 033626 (2010)

    Google Scholar 

  17. Nicolin, A.I.: Density waves in dipolar Bose-Einstein condensates. Proc. Rom. Acad. A 14, 38 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nicolin, A.I., Rata, I. (2014). Density Waves in Dipolar Bose-Einstein Condensates by Means of Symbolic Computations. In: Dulea, M., Karaivanova, A., Oulas, A., Liabotis, I., Stojiljkovic, D., Prnjat, O. (eds) High-Performance Computing Infrastructure for South East Europe's Research Communities. Modeling and Optimization in Science and Technologies, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-01520-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01520-0_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01519-4

  • Online ISBN: 978-3-319-01520-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics