Advertisement

Using Adaptive Mesh Refinement Strategy for Numerical Solving of Gas Dynamics Problems on Multicore Computers

  • Boris Rybakin
  • Peter Bogatencov
  • Grigore Secrieru
  • Nicolai Iluha
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 2)

Abstract

This paper describes an algorithm and a program for solving multidimensional problems represented by differential equations with partial derivatives adopted for using SEE regional HPC resources. The algorithm is based on the AMR method - Adaptive Mesh Refinement of computational grid. Utilization of AMR method can significantly improve resolution of difference grid in areas of high interest, and also to accelerate processes of multidimensional problem solving.

Keywords

multidimensional modelling AMR method parallel algorithms OpenMP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berger, M.J., Oliger, J.: Adaptive mesh refinement for hypervelocity partial differential equations. Journal of Comp. Phys., Elsevier 53, 482–512 (1984)MathSciNetGoogle Scholar
  2. 2.
    Balsara, D.S., Norton, C.D.: Highly parallel structure adaptive mesh refinement using parallel language-based approaches. Elsevier, Parallel Computing 27, 37–70 (2001)MATHCrossRefGoogle Scholar
  3. 3.
    Bisnovatyi-Kogan, G.S., Moiseenko, S.G., Rybakin, B.P., Secrieru, G.V.: Modeling of explosive magneto rotational phenomena: from 2D to 3D. Buletinul ASM, Mathematica N.3(55), 55–63 (2007)MathSciNetGoogle Scholar
  4. 4.
    Rybakin, B.P.: Parallel three-dimensional TVD scheme for solving problems of gravitational gas dynamics. In: Parallel Computing Technologies (PaCT 2009), Nizhny Novgorod, pp. 673–679 (2009) (in Russian)Google Scholar
  5. 5.
    Klein, R.I.: Star formation with 3-D adaptive mesh refinement: the collapse and fragmentation of molecular clouds. Journal of Computational and Applied Mathematics 109, 123–152 (1999)MATHCrossRefGoogle Scholar
  6. 6.
    Chandra, R., Menon, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J.: Parallel Programming in OpenMP. Morgan Kaufmann (2000) ISBN 1-55860-671-8Google Scholar
  7. 7.
    Stone James, M., Norman Michael, L.: ZEUS-2D: A Radiation Magnetohydroynamics Code for Astrophysical Flows in Two Space Dimensions I. The Hydrodynamic Algorithms and Tests. The Astrophysical Journal-Supplement Series 80, 753–790 (1992)CrossRefGoogle Scholar
  8. 8.
    Rybakin, B.P.: Modeling of III-D Problems of Gas Dynamics on Multiprocessing Computers and GPU. Elsevier, Computers & Fluids (January 31, 2012), doi:10.1016/j.compfluid.2012.01.016Google Scholar
  9. 9.
    Rybakin, B.P.: Numerical methods for multiprocessor computers. Moldova State University, Center for Education and Research in Mathematics and Computer Science, Chişinău (2008) ISBN 978-9975-70-700-8Google Scholar
  10. 10.
    Iliuha, N., Altuhov, A., Bogatencov, P., Secrieru, G., Golubev, A.H.-S.: Project - Providing Access to the Regional High Performance Computing Infrastructure. In: Proceedings IIS “International Workshop on Intelligent Information Systems”, Chişinău, September 13-14, pp. 183–186 (2011) ISBN 978-9975-4237-0-0Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Boris Rybakin
    • 1
  • Peter Bogatencov
    • 2
  • Grigore Secrieru
    • 2
  • Nicolai Iluha
    • 2
  1. 1.MSU, Lenin MountainsMoscowRussia
  2. 2.Institute of Mathematics and Computer ScienceAcademy of Sciences of MoldovaChisinauMoldova

Personalised recommendations