Dynamic Features of Complex Systems: A Molecular Simulation Study

  • Armen Poghosyan
  • Levon Arsenyan
  • Hrachya Astsatryan
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 2)

Abstract

The main aim of the article is the molecular simulation study and detailed analysis of surfactant molecules of complex micellar systems [1-2] consist of long hydrocarbon chain surfactant. The GROMACS software package [3] designed for high-performance simulations of large complex systems is used for the simulations. The IBM BlueGene/P supercomputer [4] at Bulgarian National Centre for Supercomputing Applications, with 8,192 processor cores connected by multiple high-performance networks, enables to investigate a completely new class of problems. The initially random distributed surfactant molecules in aqueous solute hydration have been simulated using GROMOS united atom force field [5]. An extensive series of short benchmarks run for timing purposes with different number of cores show that the studied system achieves good scalability (0.5ns per day) in case of using up to 512 processor cores. Further increasing the numbers of cores (for instance, 1024 cores) does not lead any significant increase. In spite of the limitation of number of simulations, the qualitative statistical data gave some interesting results, which indicates that long hydrocarbon chain surfactant self-assemble into small oligomers since 50ns of simulations, meanwhile in our previous study with surfactant rich content shows that 43ns is enough for self-assembling of spherical micelle.

Keywords

Parallel Molecular Dynamics Surfactants Micelle GROMACS BlueGene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, Y., Wallace, J.A., Koenig, P.H., Shen, J.K.: Molecular dynamics simulations of ionic and nonionic surfactant micelles with a generalized Born implicit-solvent model. Journal of Computational Chemistry 32(11), 2348–2358 (2011)CrossRefGoogle Scholar
  2. 2.
    Jorge, M.: Structure of cationic surfactant micelles from molecular simulations of self-assembly. Journal of Molecular Structure 946, 88–93 (2010)CrossRefGoogle Scholar
  3. 3.
    Berendsen, H.J.C., van der Spoel, D., van Drunen, R.: GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications 91(1-3), 43–56 (1995)CrossRefGoogle Scholar
  4. 4.
    Team, IBM Blue Gene, Overview of the IBM Blue Gene/P project, IBM Journal of Research and Development 52.1/2,: 199-220 (2008)Google Scholar
  5. 5.
    van Gunsteren, W.F., Berendsen, H.J.C.: Groningen Molecular Simulation (GRO-MOS) Library Manual, BIOMOS b.v., Groningen (1987)Google Scholar
  6. 6.
    Shah, D.O.: Micelles, Microemulsions and Monolayers: Science and Technology. Marcel Dekker, New York (1998)Google Scholar
  7. 7.
    Shahinyan, A.A., Khanamiryan, L.A., Aivazyan, O.M., Nalbandyan, Y.E., Grigor-yan, J.D.: Influence of water-soluble polymers on the properties on the aqueous micel-lar solutions of an anionic surfactant and on the process of micellar-emulsion polymerization of styrene. Colloid Journal 49, 521–529 (1987)Google Scholar
  8. 8.
    Affinito, F., Emerson, A., et al.: Performance Analysis and Petascaling Enabling of GROMACS, PRACE white paperGoogle Scholar
  9. 9.
    Arsenyan, L.H.: Some problems of molecular dynamics study of sodium pentadecyl-sulfonate/water lyotropic system. New Electronic Journal of Natural Sciences 1, 4–6 (2009)Google Scholar
  10. 10.
    Schuettelkopf, A.W., van Aalten, D.M.F.: PRODRG – a tool for high-throughput crystallography of protein-ligand complexes. ActaCrystallogr. D 60, 1355–1363 (2004)CrossRefGoogle Scholar
  11. 11.
    Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Hermans, J.: Intermolecular Forces, pp. 331–342. Reidel, Dordrecht (1981)CrossRefGoogle Scholar
  12. 12.
    Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.: LINCS: A Linear Constraint Solver for Molecular Simulations. Journal of Computational Chemistry 18, 1463–1472 (1997)CrossRefGoogle Scholar
  13. 13.
    Darden, T., York, D., Pedersen, L.: Particle mesh Ewald: An N log (N) method for Ewald sums in large systems. Journal of Chemutational Physics 98, 10089–10092 (1993)CrossRefGoogle Scholar
  14. 14.
    Humphrey, W., Dalke, A., Schulten, K.: VMD - Visual Molecular Dynamics. Journal of Molec. Graphics 14, 33–38 (1996)CrossRefGoogle Scholar
  15. 15.
    Poghosyan, A.H., Arsenyan, L.H., Astsatryan, H.V.: Comparative NAMD Bench-marking of Complex System on Bulgarian BlueGene/P. In: IEEE Proceedings of 35th In-ternational Convention on Information and Communication Technology, Electronics and Microelectronics, Opatija, Croatia, pp. 319–321, ISBN: 978-1-4673-2577-6Google Scholar
  16. 16.
    Ben-Shaul, A., Gelbert, W.M.: Micelles, Membranes, Microemulsions and Monolayer. Springer, New York (1994) ISBN: 978-1-4613-8391-8Google Scholar
  17. 17.
    Astsatryan, H., et al.: Services Enabling Large-Scale Linear Systems of Equations and Algorithms based on Integrated P-Grade Portlal. Springer Journal of Grid Computing (2013), doi:10.1007/s10723-013-9254-7Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Armen Poghosyan
    • 1
  • Levon Arsenyan
    • 1
  • Hrachya Astsatryan
    • 2
  1. 1.International Scientific Educational Center of the National Academy of Sciences of the Republic of ArmeniaYerevanArmenia
  2. 2.Institute for Informatics and Automation Problems of the National Academy, of Sciences of the Republic of ArmeniaYerevanArmenia

Personalised recommendations