Advertisement

Simulation of Electron Transport Using HPC Infrastructure in South-Eastern Europe

  • Emanouil Atanassov
  • Todor Gurov
  • Aneta Karaivanova
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 2)

Abstract

In this work we present Monte Carlo simulation of ultrafast electron transport in semiconductors. We study the scalability of the presented algorithms using high-performance computing resources in South-Eastern Europe. Numerical results for parallel efficiency and computational cost are also presented. In addition we discuss the coordinated use of heterogeneous HPC resources for one and the same application in order to achieve a good performance.

Keywords

Electron transport Monte Carlo algorithms scalability parallel efficiency high-performance computations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sobol, I.M.: Monte Carlo Numerical Methods, Nauka, Moscow (1973) (in Russian)Google Scholar
  2. 2.
    Kroese, D.P., Taimre, T., Botev, Z.I.: Handbook of Monte Carlo Methods. Wiley Series in Probability and Statistics. John Wiley and Sons, New York (2011)CrossRefGoogle Scholar
  3. 3.
    Kalos, M.A., Whitlock, P.A.: Monte Carlo Methods, 2nd revised and enlarged edn. WILEY-VCH GmbH&Co. KGaA, Meinheim (2008)Google Scholar
  4. 4.
    Karaivanova, A.: Statistical Numerical Methods and Simulations, Demetra, Sofia (2012) (in Bulgarian)Google Scholar
  5. 5.
    Atanassov, E., Karaivanova, A., Ivanovska, S.: Tuning the Generation of Sobol Sequence with Owen Scrambling. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2009. LNCS, vol. 5910, pp. 459–466. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Atanassov, E., Durchova, M.: Generating and Testing the Modified Halton Sequences. In: Dimov, I.T., Lirkov, I., Margenov, S., Zlatev, Z. (eds.) NMA 2002. LNCS, vol. 2542, pp. 91–98. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Mikhailov, G.A.: New Monte Carlo Methods with Estimating Derivatives, Utrecht, The Netherlands (1995)Google Scholar
  8. 8.
    Dimov, I., Dimov, T., Gurov, T.: A New Iterative Monte Carlo Approach for Inverse Matrix Problem. J. of Comp. and Appl. Math. 92, 15–35 (1998)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Scalable Parallel Random Number Generators Library for Parallel Monte Carlo Computations, SPRNG 1.0 and SPRNG 2.0, http://sprng.cs.fsu.edu
  10. 10.
    Nedjalkov, M., Kosik, R., Kosina, H., Selberherr, S.: A Wigner Equation for Nanometer and Femtosecond Transport Regime. In: Proceedings of the 2001 First IEEE Conference on Nanotechnology, pp. 277–281. IEEE, Maui (2001)Google Scholar
  11. 11.
    Nedjalkov, M., Kosina, H., Selberherr, S., Ringhofer, C., Ferry, D.K.: Unified Particle Approach to Wigner-Boltzmann Transport in Small Semiconductor Devices. Phys. Rev. B 70, 115319–115335 (2004)CrossRefGoogle Scholar
  12. 12.
    Nedjalkov, M., Kosina, H., Selberherr, S., Ringhofer, C., Ferry, D.K.: Unified particle approach to Wigner-Boltzmann transport in small semiconductor devices. Physical Review B 70, 115319–115335 (2004)CrossRefGoogle Scholar
  13. 13.
    Ringhofer, C., Nedjalkov, M., Kosina, H., Selberherr, S.: Semi-Classical Approximation of Electron-Phonon Scattering Beyond Fermi’s Golden Rule. SIAM J. of Appl. Mathematics 64(6), 1933–1953 (2004) (the references therein)Google Scholar
  14. 14.
    Gurov, T.V., Whitlock, P.A.: An Efficient Backward Monte Carlo Estimator for Solving of a Quantum Kinetic Equation with Memory Kernel. Mathematics and Computers in Simulation 60, 85–105 (2002)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Gurov, T.V., Nedjalkov, M., Whitlock, P.A., Kosina, H., Selberherr, S.: Femtosecond Relaxation of Hot Electrons by Phonon Emission in Presence of Electric Field. Physica B 314, 301–304 (2002)CrossRefGoogle Scholar
  16. 16.
    European Grid Infrastructure, http://www.egi.eu/
  17. 17.
    Atanassov, E., et al.: SALUTE application for Quantum Transport – New Grid Implementation Scheme. In: Proceedings of the Spanish Conference on e-Science Grid Computing, pp. 23–32 (2007)Google Scholar
  18. 18.
    Atanassov, E., Gurov, T., Karaivanova, A.: Ultra-fast Semiconductor Carrier Transport Simulation on the Grid. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2007. LNCS, vol. 4818, pp. 461–469. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Nedjalkov, M., Gurov, T.V., Kosina, H., Vasileska, D., Palankovski, V.: Femtosecond Evolution of Spatially Inhomogeneous Carrier Excitations: Part I: Kinetic Approach. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2005. LNCS, vol. 3743, pp. 149–156. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Levinson, I.: Translational invariance in uniform fields and the equation for the density matrix in the Wigner representation. Sov. Phys. JETP 30, 362–367 (1970)MathSciNetGoogle Scholar
  21. 21.
    Herbst, M., Glanemann, M., Axt, V., Kuhn, T.: Electron-phonon quantum kinetics for spatially inhomogeneous excitations. Physical Review B 67, 195305:1–195305:18 (2003)Google Scholar
  22. 22.
    Gurov, T., Atanassov, E., Dimov, I., Palankovski, V.: Femtosecond Evolution of Spatially Inhomogeneous Carrier Excitations: Part II: Stochastic Approach and GRID Implementation. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2005. LNCS, vol. 3743, pp. 157–163. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Dimov, I., Tonev, O.: Monte Carlo Algorithms: Performance Analysis for Some Computer Architectures. J. of Comp. and Appl. Mathematics 48, 253–277 (1993)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Li, Y., Mascagni, M.: Grid-based Quasi-Monte Carlo Applications. Monte Carlo Methods and Appl. 11(1), 39–56 (2005)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Emanouil Atanassov
    • 1
  • Todor Gurov
    • 1
  • Aneta Karaivanova
    • 1
  1. 1.Institute of Information and Communication Technologies, BASSofiaBulgaria

Personalised recommendations