Advertisement

XUV Output Coupler and XUV/IR Grazing-Incidence Beam Splitter

Chapter
  • 432 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

As discussed in the introduction chapter, several scenarios for driving nonlinear processes are possible: directly by an oscillator, inside an oscillator or inside a passive resonator and directly by amplified oscillator output. In most cases the XUV and the driving field have to be coupled out from a resonator and/or separated for further experiments. Separation/outcoupling of the XUV and driving field inside the enhancement cavity is the most demanding and richest in constraints among these different approaches. Finding a solution for this problem at extreme conditions allows one to transfer this solution to other XUV-generation approaches, but with strongly relaxed constraints. Such a solution is found in a so-called grazing-incidence plate (GIP).

Keywords

Brewster Angle Concave Mirror High Average Power High Damage Threshold Enhancement Cavity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    O. Pronin, V. Pervak, E. Fill, J. Rauschenberger, F. Krausz, A. Apolonski, Ultrabroadband efficient intracavity XUV output coupler. Opt. Express 19(11), 10232–10240 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    A. Ashkin, G. Boyd, J. Dziedzic, Resonant optical second harmonic generation and mixing. IEEE J. Quantum Electron. 2(6), 109–124 (1966)ADSCrossRefGoogle Scholar
  3. 3.
    E.O. Potma, C. Evans, X.S. Xie, R.J. Jones, J. Ye, Picosecond-pulse amplification with an external passive optical cavity. Opt. Lett. 28(19), 1835–1837 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    C. Gohle, T.U.M. Herrmann, J. Rauschenberger, R. Holzwarth, H.A. Schuessler, F. Krausz, T.W. Hänsch, A frequency comb in the extreme ultraviolet. Nature 436, 234–237 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    R.J. Jones, K.D. Moll, M.J. Thorpe, J. Ye, Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94, 193–201 (2005)CrossRefGoogle Scholar
  6. 6.
    A.K. Mills, T. Hammond, M.H. Lam, D.J. Jones, XUV frequency combs via femtosecond enhancement cavities, open access paper on arXiv.org, 2012. http://arxiv.org/abs/1206.0408
  7. 7.
    T. Eidam, S. Hanf, E. Seise, T.V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, A. Tünnermann, Femtosecond fiber CPA system emitting 830 W average output power. Opt. Lett. 35(2), 94–96 (2010)CrossRefGoogle Scholar
  8. 8.
    D.C. Yost, A. Cingöz, T.K. Allison, A. Ruehl, M.E. Fermann, I. Hartl, J. Ye, Power optimization of XUV frequency combs for spectroscopy applications. Opt. Express 19(23), 23483–23493 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    S. Holzberger, I. Pupeza, D. Esser, J. Weitenberg, H. Carstens, T. Eidam, P. Russbüldt, J. Limpert, T. Udem, A. Tünnermann, T. Hänsch, F. Krausz, E. Fill, Sub-25 nm high-harmonic generation with a 78-MHz repetition rate enhancement cavity, in CLEO: QELS-Fundamental Science, p. QTh5B.7, Optical Society of America (2012)Google Scholar
  10. 10.
    I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, T. Udem, J. Limpert, Z.A. Alahmed, A.M. Azzeer, A. Tünnermann, T.W. Hänsch, F. Krausz, Power scaling of a high-repetition-rate enhancement cavity. Opt. Lett. 35(12), 2052–2054 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    J.M. Kaster, I. Pupeza, T. Eidam, C. Jocher, E. Fill, J. Limpert, R. Holzwarth, B. Bernhardt, T. Udem, T.W. Hänsch, A. Tünnermann, F. Krausz, Towards MW average powers in ultrafast high-repetition-rate enhancement cavities, in High Intensity Lasers and High Field Phenomena, p. HFB4, Optical Society of America (2011)Google Scholar
  12. 12.
    E. Seres, J. Seres, C. Spielmann, Extreme ultraviolet light source based on intracavity high harmonic generation in a mode locked Ti:sapphire oscillator with 9.4 MHz repetition rate. Opt. Express 20(6), 6185–6190 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    P. Jaegle, Coherent Sources of XUV Radiation (Springer, New York, 2006)Google Scholar
  14. 14.
    S. Holzberger, I. Pupeza, J. Kaster, T. Eidam, B. Bernhardt, A. Vernaleken, O. Pronin, V. Pervak, R. Holzwarth, T. Udem, J. Limpert, A. Apolonskiy, E.E. Fill, T.W. Hänsch, A. Tünnermann, F. Krausz, Power scaling limitations for cavity-assisted high-harmonic generation, in Lasers, Sources, and Related Photonic Devices, p. AM4A.12, Optical Society of America (2012)Google Scholar
  15. 15.
    B. Bernhardt, A. Ozawa, A. Vernaleken, I. Pupeza, J. Kaster, Y. Kobayashi, R. Holzwarth, E. Fill, F. Krausz, T.W. Hänsch, T. Udem, Vacuum ultraviolet frequency combs generated by a femtosecond enhancement cavity in the visible. Opt. Lett. 37(4), 503–505 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    E. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1998)Google Scholar
  17. 17.
    D.C. Harris, Materials for Infrared Windows and Domes (SPIE Press, Bellinham, 1999)Google Scholar
  18. 18.
    I. Pupeza, Power Scaling of Enhancement Cavities for Nonlinear Optics. PhD thesis, LMU, München (2011)Google Scholar
  19. 19.
    I. Pupeza, E. Fill, F. Krausz, Low-loss VIS/IR-XUV beam splitter for high-power applications. Opt. Express 19(13), 12108–12118 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    D.C. Yost, T.R. Schibli, J. Ye, Efficient output coupling of intracavity high-harmonic generation. Opt. Lett. 33(10), 1099–1101 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Y.-Y. Yang, F. Süßmann, S. Zherebtsov, I. Pupeza, J. Kaster, D. Lehr, H.-J. Fuchs, E.-B. Kley, E. Fill, X.-M. Duan, Z.-S. Zhao, F. Krausz, S.L. Stebbings, M.F. Kling, Optimization and characterization of a highly-efficient diffraction nanograting for MHz XUV pulses. Opt. Express 19(3), 1954–1962 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    K.D. Moll, R.J. Jones, J. Ye, Output coupling methods for cavity-based high-harmonic generation. Opt. Express 14(18), 8189–8197 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    J. Weitenberg, P. Rußbüldt, T. Eidam, I. Pupeza, Transverse mode tailoring in a quasi-imaging high-finesse femtosecond enhancement cavity. Opt. Express 19(10), 9551–9561 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    A. Ozawa, A. Vernaleken, W. Schneider, I. Gotlibovych, T. Udem, T.W. Hänsch, Non-collinear high harmonic generation: a promising outcoupling method for cavity-assisted XUV generation. Opt. Express 16(9), 6233–6239 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    T.V. Amotchkina, Empirical expression for the minimum residual reflectance of normal- and oblique-incidence antireflection coatings. Appl. Opt. 47(17), 3109–3113 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    J.A. Dobrowolski, A.V. Tikhonravov, M.K. Trubetskov, B.T. Sullivan, P.G. Verly, Optimal single-band normal-incidence antireflection coatings. Appl. Opt. 35, 644–658 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    A.V. Tikhonravov, M.K. Trubetskov, T.V. Amotchkina, J.A. Dobrowolski, Estimation of the average residual reflectance of broadband antireflection coatings. Appl. Opt. 47, C124–C130 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    J. Neuhaus, Passively mode-locked Yb:YAG thin-disk laser with active multipass geometry. PhD thesis, University Konstanz (2009)Google Scholar
  29. 29.
    R. Szipöcs, K. Ferencz, C. Spielmann, F. Krausz, Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. Opt. Lett. 19(3), 201–203 (1994)ADSCrossRefGoogle Scholar
  30. 30.
    K. Moll, R. Jones, J. Ye, Nonlinear dynamics inside femtosecond enhancement cavities. Opt. Express 13(5), 1672–1678 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    T.W. Hansch, Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity. Opt. Commun. 35(3), 441–444, (1980)Google Scholar
  32. 32.
    D. Bauer, I. Zawischa, D.H. Sutter, A. Killi, T. Dekorsy, Mode-locked Yb:YAG thin-disk oscillator with 41 \(\mu \)J pulse energy at 145 W average infrared power and high power frequency conversion. Opt. Express 20, 9698 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    S.V. Marchese, C.R. Baer, A.G. Engqvist, S. Hashimoto, D.J. Maas, M. Golling, T. Südmeyer, U. Keller, Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level. Opt. Express 16(9), 6397–6407 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    P. Russbueldt, T. Mans, J. Weitenberg, H.D. Hoffmann, R. Poprawe, Compact diode-pumped 1.1 kW Yb:YAG innoslab femtosecond amplifier. Opt. Lett. 35(24), 4169–4171 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    S. Hädrich, M. Krebs, J. Rothhardt, H. Carstens, S. Demmler, J. Limpert, A. Tünnermann, Generation of \(\mu \)W level plateau harmonics at high repetition rate. Opt. Express 19(20), 19374–19383 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    B. Bernhardt, Dual comb spectroscopy. PhD thesis, LMU, München (2011)Google Scholar
  37. 37.
    C.R.E. Baer, C. Kränkel, C.J. Saraceno, O.H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, U. Keller, Femtosecond thin-disk laser with 141 W of average power. Opt. Lett. 35(13), 2302–2304 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M.-C. Amann, V.L. Kalashnikov, A. Apolonski, F. Krausz, High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator. Opt. Lett. 36(24), 4746–4748 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.PhysikLudwig-Maximilians-Universität (LMU)GarchingGermany

Personalised recommendations