Kerr-Lens Mode-Locked Thin-Disk Oscillator

Part of the Springer Theses book series (Springer Theses)


So far, all femtosecond thin-disk oscillators have been mode-locked by means of SESAM. The KLM technique has been proposed many times and simultaneously criticized as difficult to realize [1, 2, 3]


Pump Power Gain Medium Kerr Medium Energy Scaling Pump Spot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    U. Keller, Recent developments in compact ultrafast lasers. Nature 424, 831–838 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    R. Paschotta, U. Keller, Ever higher power from mode-locked lasers. Opt. Photon. News 14(5), 50–54 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    U. Keller, Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight. Appl. Phys. B 100, 15–28 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    S.A. Akhmanov, SYu. Nikitin, Physical Optics (Clarendon Press, Oxford, 1997)Google Scholar
  5. 5.
    R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic, Boston, 2007)Google Scholar
  6. 6.
    D.E. Spence, P.N. Kean, W. Sibbett, 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Opt. Lett. 16(1), 42–44 (1991)ADSCrossRefGoogle Scholar
  7. 7.
    M. Piché, Beam reshaping and self-mode-locking in nonlinear laser resonators. Opt. Commun. 86(2), 156–160 (1991)ADSCrossRefGoogle Scholar
  8. 8.
    E.G. Lariontsev, V.N. Serkin, Possibility of using self-focusing for increasing contrast and narrowing of ultrashort light pulses. Sov. J. Quantum Electron. 5(7), 796 (1975)ADSCrossRefGoogle Scholar
  9. 9.
    M. Marconi, O. Martinez, F. Diodati, Short pulse generation in solid state lasers by a novel passive technique. Opt. Commun. 63(3), 211–216 (1987)ADSCrossRefGoogle Scholar
  10. 10.
    F. Krausz, M. Fermann, T. Brabec, P. Curley, M. Hofer, M. Ober, C. Spielmann, E. Wintner, A. Schmidt, Femtosecond solid-state lasers. IEEE J. Quantum Electron. 28(10), 2097–2122 (1992)ADSCrossRefGoogle Scholar
  11. 11.
    T. Brabec, F. Krausz, Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    F. Krausz, M. Fermann, T. Brabec, P. Curley, M. Hofer, M. Ober, C. Spielmann, E. Wintner, A. Schmidt, Beam reshaping and self-mode-locking in nonlinear laser resonators. IEEE J. Quantum. Electron. 28(10), 2097–2122 (1992)ADSCrossRefGoogle Scholar
  13. 13.
    P.F. Moulton, Spectroscopic and laser characteristics of Ti:\({\rm {Al}}_2{\rm {O}}_3\). J. Opt. Soc. Am. B 3(1), 125–133 (1986)ADSCrossRefGoogle Scholar
  14. 14.
    G. Cerullo, S.D. Silvestri, V. Magni, Self-starting Kerr-lens mode locking of a Ti:sapphire laser. Opt. Lett. 19(14), 1040–1042 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    D. Huang, M. Ulman, L.H. Acioli, H.A. Haus, J.G. Fujimoto, Self-focusing-induced saturable loss for laser mode locking. Opt. Lett. 17(7), 511–513 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    V.L. Kalashnikov, V.P. Kalosha, I.G. Poloyko, V.P. Mikhailov, Optimal resonators for self-mode locking of continuous-wave solid-state lasers. J. Opt. Soc. Am. B 14(4), 964–969 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    E. Wintner, E. Sorokin, I. Sorokina, Laser system for producing ultra-short light pulses. US Patent 6363090B1 (2002)Google Scholar
  18. 18.
    B. Henrich, R. Beigang, Self-starting Kerr-lens mode locking of a Nd:YAG-laser. Opt. Commun. 135, 300–304 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    G.P.A. Malcolm, A.I. Ferguson, Self-mode locking of a diode-pumped Nd:YLF laser. Opt. Lett. 16(24), 1967–1969 (1991)ADSCrossRefGoogle Scholar
  20. 20.
    Y.M. Liu, K.W. Sun, P.R. Prucnal, S.A. Lyon, Simple method to start and maintain self-mode-locking of a Ti:sapphire laser. Opt. Lett. 17(17), 1219–1221 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    L. Turi, F. Krausz, Amplitude modulation mode locking of lasers by regenerative feedback. Appl. Phys. Lett. 58(8), 810–812 (1991)ADSCrossRefGoogle Scholar
  22. 22.
    I.P. Bilinsky, R.P. Prasankumar, J.G. Fujimoto, Self-starting mode locking and Kerr-lens mode locking of a Ti:\({\rm {Al}}_2{\rm {O}}_3\) laser by use of semiconductor-doped glass structures. J. Opt. Soc. Am. B 16, 546–549 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    D.H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, T. Tschudi, Semiconductor saturable-absorber mirror assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime. Opt. Lett. 24(9), 631–633 (1999)ADSCrossRefGoogle Scholar
  24. 24.
  25. 25.
    C.J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O.H. Heckl, C.R.E. Baer, M. Golling, T. Südmeyer, U. Keller, Sesams for high-power oscillators: design guidelines and damage thresholds. IEEE J. Quantum Electron. 18, 29–41 (2012)CrossRefGoogle Scholar
  26. 26.
    O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M.-C. Amann, V.L. Kalashnikov, A. Apolonski, F. Krausz, High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator. Opt. Lett. 36(24), 4746–4748 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    S. Uemura, K. Torizuka, Sub-40-fs pulses from a diode-pumped Kerr-lens mode-locked Yb-doped yttrium aluminum garnet laser. Jap. J. Appl. Phys. 50(1), 010201 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. Mourou, I. Johannsen, A. Giesen, W. Seeber, U. Keller, Ultrafast ytterbium-doped bulk lasers and laser amplifiers. Appl. Phys. B 69, 3–17 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    V. Pervak, O. Pronin, O. Razskazovskaya, J. Brons, I.B. Angelov, M.K. Trubetskov, A.V. Tikhonravov, F. Krausz, High-dispersive mirrors for high power applications. Opt. Express 20(4), 4503–4508 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    R. Adair, L.L. Chase, S.A. Payne, Nonlinear refractive index of optical crystals. Phys. Rev. B 39, 3337–3350 (1989)ADSCrossRefGoogle Scholar
  31. 31.
    V.L. Kalashnikov, E. Sorokin, I.T. Sorokina, Mechanisms of spectral shift in ultrashort-pulse laser oscillators. J. Opt. Soc. Am. B 18(11), 1732–1741 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    V.L. Kalashnikov, E. Sorokin, S. Naumov, I.T. Sorokina, Spectral properties of the Kerr-lens mode-locked \({\rm {Cr}}^{4+}\): YAG laser. J. Opt. Soc. Am. B 20(10), 2084–2092 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    V. Magni, Multielement stable resonators containing a variable lens. J. Opt. Soc. Am. A 4(10), 1962–1969 (1987)ADSCrossRefGoogle Scholar
  34. 34.
    S.A. Meyer, J.A. Squier, S.A. Diddams, Diode-pumped Yb:KYW femtosecond laser frequency comb with stabilized carrier-envelope offset frequency. Eur. Phys. J. D 48(1), 19–26 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    T. Ganz, V. Pervak, A. Apolonski, P. Baum, 16 fs, 350 nJ pulses at 5 MHz repetition rate delivered by chirped pulse compression in fibers. Opt. Lett. 36(7), 1107–1109 (2011)CrossRefGoogle Scholar
  36. 36.
    H. Fattahi, C.Y. Teisset, O. Pronin, A. Sugita, R. Graf, V. Pervak, X. Gu, T. Metzger, Z. Major, F. Krausz, A. Apolonski, Pump-seed synchronization for MHz repetition rate, high-power optical parametric chirped pulse amplification. Opt. Express 20(9), 9833–9840 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    A. Cingöz, D.C. Yost, T.K. Allison, A. Ruehl, M.E. Fermann, I. Hartl, J. Ye, Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482, 68–71 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    D. Bauer, I. Zawischa, D.H. Sutter, A. Killi, T. Dekorsy, Mode-locked Yb:YAG thin-disk oscillator with \(41\,\upmu {\rm {J}}\) pulse energy at 145 W average infrared power and high power frequency conversion. Opt. Express 20, 9698 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    J. Neuhaus, D. Bauer, J. Zhang, A. Killi, J. Kleinbauer, M. Kumkar, S. Weiler, M. Guina, D.H. Sutter, T. Dekorsy, Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry. Opt. Express 16(25), 20530–20539 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    K. Tamura, J. Jacobson, E.P. Ippen, H.A. Haus, J.G. Fujimoto, Unidirectional ring resonators for self-starting passively mode-locked lasers. Opt. Lett. 18(3), 220–222 (1993)ADSCrossRefGoogle Scholar
  41. 41.
    J. Weitenberg, P. Rußbüldt, T. Eidam, I. Pupeza, Transverse mode tailoring in a quasi-imaging high-finesse femtosecond enhancement cavity. Opt. Express 19(10), 9551–9561 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    R. Paschotta, Beam quality deterioration of lasers caused by intracavity beam distortions. Opt. Express 14(13), 6069–6074 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    Q. Zhang, B. Ozygus, H. Weber, Degeneration effects in laser cavities. Eur. Phys. J. Appl. Phys. 6, 293–298 (1999)ADSCrossRefGoogle Scholar
  44. 44.
    M.A. Ahmed, M. Haefner, M. Vogel, C. Pruss, A. Voss, W. Osten, T. Graf, High-power radially polarized Yb:YAG thin-disk laser with high efficiency. Opt. Express 19(6), 5093–5103 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    S.H. Cho, F.X. Kärtner, U. Morgner, E.P. Ippen, J.G. Fujimoto, J. Cunningham, W.H. Knox, Generation of 90-nJ pulses with a 4-MHz repetition-rate Kerr-lens mode-locked Ti:\({\rm {Al}}_2{\rm {O}}_3\) laser operating with net positive and negative intracavity dispersion. Opt. Lett. 26(8), 560–562 (2001)ADSCrossRefGoogle Scholar
  46. 46.
    S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, A. Apolonski, Approaching the microjoule frontier with femtosecond laser oscillators. New J. Phys. 1, 216 (2005)CrossRefGoogle Scholar
  47. 47.
    G. Palmer, M. Emons, M. Siegel, A. Steinmann, M. Schultze, M. Lederer, U. Morgner, Passively mode-locked and cavity-dumped Yb:KY(\({\rm {WO}}_4\))\(_2\) oscillator with positive dispersion. Opt. Express 15(24), 16017–16021 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    G. Palmer, M. Schultze, M. Siegel, M. Emons, U. Bünting, U. Morgner, Passively mode-locked Yb:KLu\(({\rm {WO}}_4)_2\) thin-disk oscillator operated in the positive and negative dispersion regime. Opt. Lett. 33(14), 1608–1610 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    F. Wise, A. Chong, W. Renninger, High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion. Laser Photon Rev. 2(1–2), 58–73 (2008)CrossRefGoogle Scholar
  50. 50.
    O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M.-C. Amann, A. Apolonski, V.L. Kalashnikov, F. Krausz, High-power Kerr-lens mode-locked Yb:YAG thin-disk oscillator in the positive dispersion regime. Opt. Lett. 37(17), 3543–3545 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    V.L. Kalashnikov, Chirped-pulse oscillators: route to the energy-scalable femtosecond pulses, in Solid State Lasers, ed. by A.H. Al-Khursan (InTech, 2012), pp. 145–184Google Scholar
  52. 52.
    V. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, A. Apolonski, Approaching the microjoule frontier with femtosecond laser oscillators. New J. Phys. 1, 217 (2005)CrossRefGoogle Scholar
  53. 53.
    R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. Tropper, U. Keller, Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers. Appl. Phys. B 75, 445–451 (2002)ADSCrossRefGoogle Scholar
  54. 54.
    A. Fernandez, Chirped-pulse oscillators: generating microjoule femtosecond pulses at megahertz repetition rate. Ph.D. thesis, LMU München (2007)Google Scholar
  55. 55.
    A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, A. Apolonski, Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification. Opt. Lett. 29(12), 1366–1368 (2004)ADSCrossRefGoogle Scholar
  56. 56.
  57. 57.
    E. Seres, J. Seres, C. Spielmann, Extreme ultraviolet light source based on intracavity high harmonic generation in a mode locked Ti:sapphire oscillator with 9.4 MHz repetition rate. Opt. Express 20(6), 6185–6190 (2012)ADSCrossRefGoogle Scholar
  58. 58.
    N. Vretenar, T.C. Newell, T. Carson, P. Peterson, T. Lucas, W.P. Latham, H. Bostanci, J.J. Huddle-Lindauer, B.A. Saarloos, D. Rini, Cryogenic ceramic 277 watt Yb:YAG thin-disk laser. Opt. Eng. 51(1), 014201 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    D. Brown, R. Cone, Y. Sun, R. Equall, Yb:YAG absorption at ambient and cryogenic temperatures. IEEE J. Quantum Electron. 11(3), 604–612 (2005)CrossRefGoogle Scholar
  60. 60.
    B.L. Volodin, S.V. Dolgy, E.D. Melnik, E. Downs, J. Shaw, V.S. Ban, Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings. Opt. Lett. 29(16), 1891–1893 (2004)ADSCrossRefGoogle Scholar
  61. 61.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.PhysikLudwig-Maximilians-Universität (LMU)GarchingGermany

Personalised recommendations