High-Power Thin-Disk Resonator and Gain Medium

Part of the Springer Theses book series (Springer Theses)


Progress in the development of laser diodes has attracted a lot of interest to Yb-doped gain media over the last few decades. Such gain media are of a quasi-three-level nature, and have a narrow absorption bandwidth, previously considered as undesirable, but then turned out to be advantageous with the availability of powerful high-brightness pump diodes. Together with the invention of the thin-disk concept [1] and routine growth of Yb:YAG crystals [2] a new class of thin-disk solid-state diode-pumped lasers was established [3]. These systems are truly power-scalable, have large mode areas over the optical elements and are sensitive to misalignment.


Pump Power Thermal Lens Gain Medium Stability Zone Pump Spot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Giesen, H. Hiigep, A. Voss, K. Wittig, U. Brauch, H. Opower, Scalable concept for diode-pumped high-power solid-state lasers. Appl. Phys. B 372, 365–372 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    G. Huber, C. Kränkel, K. Petermann, Solid-state lasers: status and future. J. Opt. Soc. Am. B 27, B93–B105 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    E. Sorokin, Few-Cycle Laser Pulse Generation and Its Applications, Solid-State Materials for Few-Cycle Pulse Generation and Amplification, Springer, Berlin, 2004), pp. 3–51Google Scholar
  4. 4.
  5. 5.
  6. 6.
    M. Larionov, Kontaktierung und Charakterisierung von Kristallen für Scheibenlaser (Herbert Utz Verlag, München, 2009)Google Scholar
  7. 7.
    A. Giesen, J. Speiser, Fifteen years of work on thin-disk lasers: results and scaling laws. IEEE J. Quantum Electron. 13(3), 598–609 (2007)CrossRefGoogle Scholar
  8. 8.
    K. Beil, S.T. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Kränkel, K. Petermann, G. Huber, Thermal and laser properties of Yb:LuAG for kW thin disk lasers. Opt. Express 18(20), 20712–20722 (2010)ADSCrossRefGoogle Scholar
  9. 9.
  10. 10.
    R. Paschotta, J. Aus der Au, G. Spühler, S. Erhard, A. Giesen, U. Keller, Passive mode locking of thin-disk lasers: effects of spatial hole burning. Appl. Phys. B 72, 267–278 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    R. Paschotta, Power scalability as a precise concept for the evaluation of laser architectures. Open access paper on, (2007).
  12. 12.
    C. Kränkel, Ytterbium-dotierte Borate und Vanadate mit großer Verstärkungsbandbreite als aktive Materialien im Scheibenlaser. PhD thesis, Universität Hamburg, (2008)Google Scholar
  13. 13.
    T. Südmeyer, C. Kränkel, C. Baer, O. Heckl, C. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, U. Keller, High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation. Appl. Phys. B 97, 281–295 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    R. Peters, Ytterbium-dotierte Sesquioxide als hocheffiziente Lasermaterialien. PhD thesis, Universität Hamburg, (2009)Google Scholar
  15. 15.
    B.L. Volodin, S.V. Dolgy, E.D. Melnik, E. Downs, J. Shaw, V.S. Ban, Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings. Opt. Lett. 29(16), 1891–1893 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    O.H. Heckl, C. Siebert, D. Sutter, J. Kleinbauer, D. Bauer, Perfect precision in industrial micro machining. Laser Tech. J. 9(2), 42–47 (2012)CrossRefGoogle Scholar
  17. 17.
    private discussion with Kolja BeilGoogle Scholar
  18. 18.
    C.R.E. Baer, C. Kränkel, C.J. Saraceno, O.H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, U. Keller, Femtosecond thin-disk laser with 141 W of average power. Opt. Lett. 35(13), 2302–2304 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    D.S. Sumida, T.Y. Fan, Emission spectra and fluorescence lifetime measurements of Yb:YAG as a function of temperature, In advanced solid state lasers, (Optical Society of America, Washington, 1994), p. YL4Google Scholar
  20. 20.
    K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, S. Basun, Rare-earth-doped sesquioxides. J. Lumin. 87–89, 973–975 (2000)CrossRefGoogle Scholar
  21. 21.
    A. Killi, C. Stolzenburg, I. Zawischa, D. Sutter, J. Kleinbauer, S. Schad, R. Brockmann, S. Weiler, J. Neuhaus, S. Kalfhues, E. Mehner, D. Bauer, H. Schlueter, C. Schmitz, The broad applicability of the disk laser principle: from CW to ps, vol. 7193 (SPIE, Bellingham, 2009), p. 71931TGoogle Scholar
  22. 22.
    D. Bauer, I. Zawischa, D.H. Sutter, A. Killi, T. Dekorsy, Mode-locked Yb:YAG thin-disk oscillator with \(41 \upmu \text{ J }\) pulse energy at 145 W average infrared power and high power frequency conversion. Opt. Express 20, 9698 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    N. Hodgson, H. Weber, Optical Resonators: Fundamentals, Advanced Concepts and Applications, (Springer, Berlin, 1997)Google Scholar
  24. 24.
    O. Svelto, Principles of Lasers, 4th edn. (Springer, Heidelberg, 2007)Google Scholar
  25. 25.
    W. Koechner, Solid-State Laser Engineering, 6th edn. (Springer, Berlin, 1999)Google Scholar
  26. 26.
    S. Chetkin, G. Vdovin, Deformable mirror correction of a thermal lens induced in the active rod of a solid state laser. Opt. Commun. 100, 159–165 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    E. Schmid, J. Speiser, A. Giesen, Characterisation of a Deformable Mirror for Compensation of the Thermal Lens in High Power Thin-Disk Lasers, (Hamburg, Germany, 2010)Google Scholar
  28. 28.
    D. Hanna, C. Sawyers, M. Yuratich, Large volume \(\text{ TEM }_{00}\) mode operation of Nd:YAG lasers. Opt. Commun. 37(5), 359–362 (1981)ADSCrossRefGoogle Scholar
  29. 29.
    V. Magni, Multielement stable resonators containing a variable lens. J. Opt. Soc. Am. A 4(10), 1962–1969 (1987)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.PhysikLudwig-Maximilians-Universität (LMU)GarchingGermany

Personalised recommendations