Advertisement

Basics of Mode-Locking

Chapter
  • 447 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter is devoted to the theoretical basics underlying the mode-locking of an oscillator. Section 2.1 intuitively describes the concept of locking the oscillator modes and the different regimes of ultrashort pulse formation. Section 2.2 shows the role of different effects on pulse and generation. Specifically, the basics of soliton mode-locking and some important equations are formulated. Section 2.3 introduces the basic idea of pulse formation in the positive dispersion regime and advantages. Mode-locking instabilities are analyzed in Sect. 2.4 and a short summary finalizes this chapter.

Keywords

Saturable Absorber Ultrashort Pulse Soliton Pulse Negative Dispersion Group Delay Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L.E. Hargrove, R.L. Fork, M.A. Pollack, Locking of He-Ne laser modes induced by synchronous intracavity modulation. Appl. Phys. Lett. 5(1), 4–5 (1964)ADSCrossRefGoogle Scholar
  2. 2.
    A. DeMaria, J. Glenn, W.H., M. Brienza, and M. Mack, “Picosecond laser pulses”. Proc. IEEE 57(1), 2–25 (1969)Google Scholar
  3. 3.
    W. Koechner, Solid-State Laser Engineering, 6th edn. (Springer, New York, 2006)Google Scholar
  4. 4.
    E. Ippen, C. Shank, A. Dienes, Passive mode locking of the cw dye laser. Appl. Phys. Lett. 21(8), 348–350 (1972)ADSCrossRefGoogle Scholar
  5. 5.
    F. Kärtner, J. der Au, U. Keller, Mode-locking with slow and fast saturable absorbers-what’s the difference? IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998)CrossRefGoogle Scholar
  6. 6.
    U. Keller, Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight. Appl. Phys. B 100, 15–28 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    V.L. Kalashnikov, Solid state lasers, ch. Chirped-Pulse Oscillators: Route to the Energy-Scalable Femtosecond Pulses. (InTech, 2012), pp. 145–184Google Scholar
  8. 8.
    S.A. Akhmanov, SYu. Nikitin, Physical Optics (Clarendon Press, Oxford, 1997)Google Scholar
  9. 9.
    R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic Press, Boston, 2007)Google Scholar
  10. 10.
    R.L. Fork, O.E. Martinez, J.P. Gordon, Negative dispersion using pairs of prisms. Opt. Lett. 9(5), 150–152 (1984)ADSCrossRefGoogle Scholar
  11. 11.
    E. Treacy, Optical pulse compression with diffraction gratings. IEEE J. Quantum Electron 5(9), 454–458 (1969)ADSCrossRefGoogle Scholar
  12. 12.
    R. Szipöcs, K. Ferencz, C. Spielmann, F. Krausz, Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. Opt. Lett. 19(3), 201–203 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    V. Pervak, O. Pronin, O. Razskazovskaya, J. Brons, I.B. Angelov, M.K. Trubetskov, A.V. Tikhonravov, F. Krausz, High-dispersive mirrors for high power applications. Opt. Express 20(4), 4503–4508 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    H.A. Haus, J.G. Fujimoto, E.P. Ippen, Structures for additive pulse mode locking. J. Opt. Soc. Am. B 8(10), 2068–2076 (1991)ADSCrossRefGoogle Scholar
  15. 15.
    G.P. Agrawal, Nonlinear Fiber Optics, 3rd edn. (Academic Press, New York, 2001)Google Scholar
  16. 16.
    M. Tokurakawa, A. Shirakawa, K. ichi Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, A.A. Kaminskii, Diode-pumped 65 fs Kerr-lens mode-locked \(\text{ Y } \text{ b }^{3+}\):\(\text{ L } \text{ u }_2\text{ O }_3\) and nondoped \(\text{ Y }_2\text{ O }_3\) combined ceramic laser. Opt. Lett. 33(12), 1380–1382 (2008)Google Scholar
  17. 17.
    R. Ell, U. Morgner, F.X. Kärtner, J.G. Fujimoto, E.P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M.J. Lederer, A. Boiko, B. Luther-Davies, Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser. Opt. Lett. 26, 373–375 (Mar 2001)ADSCrossRefGoogle Scholar
  18. 18.
    B. Braun, K.J. Weingarten, F.X. Kärtner, U. Keller, Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning. Appl. Phys. B 61, 429–437 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    R. Paschotta, J. Aus der Au, G. Spühler, S. Erhard, A. Giesen, U. Keller, Passive mode locking of thin-disk lasers: effects of spatial hole burning. Appl. Phys. B 72, 267–278 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    S. Kelly, Characteristic sideband instability of periodically amplified average soliton. Electron. Lett. 28(8), 806–807 (1992)CrossRefGoogle Scholar
  21. 21.
    M. Dennis, I. Duling III, Experimental study of sideband generation in femtosecond fiber lasers. IEEE J. Quantum Electron. 30(6), 1469–1477 (1994)ADSCrossRefGoogle Scholar
  22. 22.
    A. Schlatter, S.C. Zeller, R. Grange, R. Paschotta, U. Keller, Pulse-energy dynamics of passively mode-locked solid-state lasers above the Q-switching threshold. J. Opt. Soc. Am. B 21(8), 1469–1478 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, U. Keller, Q-switching stability limits of continuous-wave passive mode locking. J. Opt. Soc. Am. B 16(1), 46–56 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    Q. Xing, W. Zhang, K. Yoo, Self-Q switched self-mode-locked Ti:sapphire laser. Opt. Commun. 119(12), 113–116 (1995)CrossRefGoogle Scholar
  25. 25.
    J. Jasapara, W. Rudolph, V.L. Kalashnikov, D.O. Krimer, I.G. Poloyko, M. Lenzner, Automodulations in Kerr-lens mode-locked solid-state lasers. J. Opt. Soc. Am. B 17(2), 319–326 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.PhysikLudwig-Maximilians-Universität (LMU)GarchingGermany

Personalised recommendations