Skip to main content

Long-Range Dependence and ARFIMA Models

  • Chapter
  • First Online:
Long-Range Dependence and Sea Level Forecasting

Part of the book series: SpringerBriefs in Statistics ((BRIEFSSTATIST))

  • 918 Accesses

Abstract

In this chapter, long-range dependence concept, Hurst phenomenon and ARFIMA models are introduced and the earlier work on these subjects are reviewed. Several methodologies are introduced for the estimation of long-range dependence index (Hurst number or fractional difference parameter).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barbosa SM, Fernandes MJ, Silva ME (2006) Long-range dependence in North Atlantic sea level. Phys A 371(2):725–731

    Article  Google Scholar 

  • Beran J (1994) Statistics for long-memory processes. Chapman and Hall, New York

    MATH  Google Scholar 

  • Beran J, Terrin N (1996) Testing for a change of the long-memory parameter. Biometrika 83(3):627–638

    Article  MathSciNet  MATH  Google Scholar 

  • Bloomfield P (1992) Trends in global temperature. Clim Change 21(1):1–16

    Article  Google Scholar 

  • Box, G.E.P, and Jenkins, G.M. (1976). Time series analysis: forecasting and control. Holden-Day, San Fransisco

    Google Scholar 

  • Box GEP, Jenkins GM, Reinsel GC (2008) Time series analysis: forecasting and control. Wiley, Hoboken

    MATH  Google Scholar 

  • Brockwell PJ, Davis RA (1987) Time series: theory and methods. Springer, New York

    MATH  Google Scholar 

  • Crato N, Ray BK (1996) Model selection and forecasting for long-range dependent processes. J Forecast 15:107–125

    Article  Google Scholar 

  • Dahlhaus R (1989). Efficient parameter estimation for self-similar processes. Ann Stat 17, 1749–1766

    Google Scholar 

  • Eltahir EAB (1996) El Nino and the natural variability in the flow of the Nile River. Water Resour Res 32(1):131–137

    Article  Google Scholar 

  • Fox R, Taqqu MS (1986) Large-sample properties of parameter estimates for strongly dependent stationary gaussian time series. The Ann Stat 14(2):517–532

    Article  MathSciNet  MATH  Google Scholar 

  • Geweke J, Porter-Hudak S (1983) The estimation and application of long memory time series models. J Time Ser Anal 4(4):221–238

    Article  MathSciNet  MATH  Google Scholar 

  • Granger CWJ, Joyeux R (1980) An introduction to long memory time series models and fractional differencing. J Time Ser Anal 1:15–29

    Article  MathSciNet  MATH  Google Scholar 

  • Haslett J, Rafterv AE (1989) Space-time modelling with long-memory dependence: assessing Ireland’s wind power resource. Appl Statist 38(1):1–50

    Article  Google Scholar 

  • Hosking JRM (1981) Fractional differencing. Biometrika 68:165–176

    Article  MathSciNet  MATH  Google Scholar 

  • Hsui, AT., Rust, K A., Klein, G D. (1993). A fractal analysis of Quaternary, Cenozoic- Mesozoic, and Late Pennsylvanian sea level changes. J Geophys Res 98 (B12), 21963–21967

    Google Scholar 

  • Hurst HE (1951) Long-term storage capacity of reservoirs. Trans Am Soc Civ Eng 116:77–779

    Google Scholar 

  • Koutsoyiannis D (2002) The hurst phenomenon and fractional Gaussian noise made easy. Hydrol Sci J 47(4):573–595

    Article  Google Scholar 

  • Koutsoyiannis D (2003) Climate change, the Hurst phenomenon, and hydrological statistics. Hydrol Sci J 48(1):3–27

    Article  Google Scholar 

  • Lo A (1991) Long-term memory in stock market prices. Econometrica 59:1279–1313

    Article  MATH  Google Scholar 

  • Mandelbrot BB (1971) A fast fractional Gaussian noise generator. Water Resour Res 7(3):543–553

    Article  Google Scholar 

  • Mandelbrot BB, Van Ness JW (1968) Fractional Brownian motions, fractional noises and application. Soc Ind Appl Math Rev 10:422–437

    MATH  Google Scholar 

  • Mandelbrot BB, Wallis JR (1968) Noah, Joseph and operational hydrology , Water Resour. Res. 4:909–920

    Article  Google Scholar 

  • Mandelbrot BB, Wallis JR (1969) Computer experiments with fractional Gaussian noises. Water Resour Res 5:228–267

    Article  Google Scholar 

  • Mandelbrot BB, Taqqu MS (1979) Robust R/S analysis of long run serial correlation. 42nd Session of the International Statistical Institute. Manila, Book 2:69–99

    MathSciNet  Google Scholar 

  • Molz FJ, Boman GK (1993) A fractal-based stochastic interpolation scheme in subsurface hydrology. Water Resour Res 29(11):3769–3774

    Article  Google Scholar 

  • Montanari A, Rosso R, Taqqu MS (1997) Fractionally differenced ARIMA models applied to hvdrologic time series. Water Resour Res 33(5):1035–1044

    Article  Google Scholar 

  • Palma W (2007) Long-memory time series: theory and methods. Wiley, Hoboken

    Book  Google Scholar 

  • Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic organization of DNA nucleotides. Phys Rev E 49:1685–1689

    Article  Google Scholar 

  • Stephenson, D B.,Pavan, V., Bojariu, R (2000). Is the North Atlantic Oscillation a random walk? Int J Clim 20(1), 1-18

    Google Scholar 

  • Taqqu, M.S., Teverovsky, V., Willinger, W. (1995). Estimators for long-range dependence: An empirical study. Fractals 3(4), 785-798

    Google Scholar 

  • Vogel RM, Tsai Y, Limbrunner JF (1998) The regional persistence and variability of annual streamflow in the United States. Water Resour Res 34(12):3445–3459

    Article  Google Scholar 

  • Vyushin DI, Kushner PJ (2009) Power-law and long-memory characteristics of the atmospheric general circulation. J Clim 22(11):2890–2904

    Article  Google Scholar 

  • Whittle P (1951) Hypothesis testing in time series analysis. Hafner, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ercan .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Ercan, A., Kavvas, M.L., Abbasov, R.K. (2013). Long-Range Dependence and ARFIMA Models. In: Long-Range Dependence and Sea Level Forecasting. SpringerBriefs in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-01505-7_2

Download citation

Publish with us

Policies and ethics