Advertisement

Taxonomy of User Intention and Benefits of Visualization for Financial and Accounting Data Analysis

  • Snezana SavoskaEmail author
  • Suzana Loshkovska
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 231)

Abstract

We propose а new multidimensional and multivariate taxonomy for information visualization. This taxonomy takes into consideration users’ intentions and the benefits of visualization for analysts, businessmen and managers who use financial and accounting data. To explain the proposed taxonomy, a taxonomic framework has been defined. The framework contains three groups of attributes classified according to visual techniques and their capabilities. We have analyzed and coded several multidimensional and multivariate visualization techniques. Creating this kind of a taxonomic model for visualization of multidimensional and multivariate financial or accounting data implies a possibility for introducing an automatic selection of a visualization technique and the best visual representation.

Keywords

data visualization taxonomy financial and accounting data user’s design model multi-dimensionality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahokas, T.: Information Visualization in a Business Decision Support System (2008), http://www.doria.fi/bitstream/handle/10024/38926/informat.pdf?sequence=1 (January 12, 2013)
  2. 2.
    Bertin, J.: Semiology of Graphics. University of Wisconsin Press, Madison (1983)Google Scholar
  3. 3.
    Buja, A., Cook, D., Swayne, D.F.: Interactive high-dimensional data visualization. Journal of Computational and Graphical Statistics 5, 78–99 (1996)Google Scholar
  4. 4.
    Card, S.K., Mackinlay, J.: The structure of the Information Visualization Design Space. IEEE Xplore (2009), http://dl.acm.org/citation.cfm?id=857632 (January 11, 2013)
  5. 5.
    Card, S.K., Mackinlay, J.D., Shneiderman, B.: Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann Publishers, San Francisco (1999)Google Scholar
  6. 6.
    Chengzhi, Q., Chenghu, Z., Tao, P.: Taxonomy of Visualization Techniques and Systems – Concerns between Users and Developers are Different. Asia GIS CP, Wuhan, China (2003)Google Scholar
  7. 7.
    Chi, E.H., Riedl, J.T.: An Operator Interaction Framework for Visualization Systems. In: Proc. IEEE S. Inf. Vis., pp. 63–70. IEEE (1998)Google Scholar
  8. 8.
    Chi, E.H.: A Taxonomy of Visualization Techniques using the Data State Reference Model. In: Proc. IEEE S. Inf. Vis., pp. 69–75. IEEE (2000)Google Scholar
  9. 9.
    Chuah, M., Roth, S.: On the semantics of interactive visualization. In: Proceedings of IEEE Visualization (Vis 1996), pp. 29–36. IEEE (1996)Google Scholar
  10. 10.
    Espinosa, O.J., Hendrickson, C., Garrett, J.H.: Domain Analysis: A Technique to Design A User-Centered Visualization Framework. In: Proc. IEEE S. Inf. Vis, pp. 44–52. IEEE (1999)Google Scholar
  11. 11.
    Foni, A.E., Papagiannakis, G., Magnetat-Thalmann, N.: A Taxonomy of Visualization Strategies for Cultural Heritage Application. ACM Journal on Computing and Cultural Heritage 3, 1–21 (2010)CrossRefGoogle Scholar
  12. 12.
    Inselberg, A.: Parallel Coordinates: Visual Multidimensional Geometry and Its Application. Springer Science+Business Media (2009)Google Scholar
  13. 13.
    A Periodic Table of Visualisation Methods (May 12, 2012), http://www.visual-literacy.org/periodic_table/periodic_table.html
  14. 14.
    Liu, Z., Stasko, J.T.: Mental Models, Visual Reasoning and Interaction in Information Visualization: A Top-down Perspective. IEEE Trans. Vis. Comp. Graph., 999–1008 (2010)Google Scholar
  15. 15.
    Keim, D.A., Mansmann, F., Thomas, J.: Visual Analytics: How Much Visualization and How Much Analytics? SigKDD Explorations Journal 11, 5–8 (2009)CrossRefGoogle Scholar
  16. 16.
    Keim, D.A., Mansmann, F., Schneidewind, J., Ziegler, H.: Challenges in Visual Data Analysis. In: International Conference on Information Visualization (IV), pp. 9–16. IEEE Press (2006)Google Scholar
  17. 17.
    Keim, D.A.: Visual Exploration of Large Data Sets. Communications of the ACM 44, 38–44 (2001)CrossRefGoogle Scholar
  18. 18.
    Keim, D.A.: Information visualization and visual data mining. IEEE Tran. Vis. & Com. Graph., 1–8 (2002)Google Scholar
  19. 19.
    Savoska, S., Loskovska, S.: Evaluation of Taxonomy of User Intention and Benefits of Visualization for Financial and Accounting Data Analysis. In: The 7th International Conference of IS & Grid Technology, Sofia (2013) (in print) Google Scholar
  20. 20.
    Shneiderman, B.: The eyes have it: A task by data type taxonomy for information visualization. In: IEEE Symposium on Visual Language, pp. 336–343 (1996)Google Scholar
  21. 21.
    Tagerden, D.P.: Business Information Visualization. CAIS. 1, Paper 4 (1999)Google Scholar
  22. 22.
    Tory, M., Möller, T.: Rethinking Visualization: A High-Level Taxonomy. In: Proceedings of the INFOVIS, pp. 151–158. IEEE (2004)Google Scholar
  23. 23.
    Tory M. Möller T.: A Model-based visualization Taxonomy. In: INFOVIS 2002 (2002), ftp://142.58.111.2/ftp/pub/cs/techreports/2002/CMPT2002-06.pdf (December 1, 2012)
  24. 24.
    Tweedie, L.: Characterizing interactive externalizations. In: Proc. of the ACM Human Factors in Computing Systems Conference (CHI 1997), pp. 375–382. ACM Press (1997)Google Scholar
  25. 25.
    Wehrend, S., Lewis, C.: A problem-oriented classification of visualization technique. In: Proc. of IEEE Visualization (Vis 1990), pp. 139–143. IEEE (1990)Google Scholar
  26. 26.
    Wilkinson, L.: The Grammar of Graphics, 2nd edn. Springer-Verlag Science+Business Medi Inc., New York (1999)zbMATHCrossRefGoogle Scholar
  27. 27.
    Wong, P.C., Bergeron, R.D.: 30 Years of Multidimensional Multivariate Visualization. In: Scientific Visualization, Overviews, Methodologies, and Techniques, pp. 3–33. National Science Foundation, IEEE (1997)Google Scholar
  28. 28.
    Zhou, M., Feiner, S.: Visual task characterization for automated visual discourse synthesis. In: Proc. of the ACM Human Factors in Computing Systems Conference (CHI 1998), pp. 392–399. ACM Press (1998)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Faculty of Administration and Information System ManagementUniversity St. Kliment Ohridski - BitolaBitolaRepublic of Macedonia
  2. 2.Faculty of Computer Science and EngeneeringSs. Cyril and Methodius University in SkopjeSkopjeRepublic of Macedonia

Personalised recommendations