Global Path Planning in Grid-Based Environments Using Novel Metaheuristic Algorithm

  • Stojanche PanovEmail author
  • Natasa Koceska
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 231)


The global path planning problem is very challenging NP-complete problem in the domain of robotics. Many metaheuristic approaches have been developed up to date, to provide an optimal solution to this problem. In this work we present a novel Quad-Harmony Search (QHS) algorithm based on Quad-tree free space decomposition methodology and Harmony Search optimization. The developed algorithm has been evaluated on various grid based environments with different percentage of obstacle coverage. The results have demonstrated that it is superior in terms of time and optimality of the solution compared to other known metaheuristic algorithms.


Artificial Intelligence Free Space Decomposition Global Path- Planning Heuristic Algorithm Robotics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lau, B., Sprunk, C., Burgard, W.: Efficient grid-based spatial representations for robot navigation in dynamic environments. Robotics and Autonomous Systems (2012)Google Scholar
  2. 2.
    Aarts, E.H., Korst, J., Van Laarhoven, P.J.: Simulated annealing. Local Search in Combinatorial Optimization, 91–120 (1997)Google Scholar
  3. 3.
    Ho, Y.J., Liu, J.S.: Simulated annealing based algorithm for smooth robot path planning with different kinematic constraints. In: Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 1277–1281. ACM (2010)Google Scholar
  4. 4.
    Liang, Y., Xu, L.: Global path planning for mobile robot based genetic algorithm and modified simulated annealing algorithm. In: Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation, pp. 303–308. ACM (2009)Google Scholar
  5. 5.
    Du, Z.Z., Liu, G.D.: Path Planning of Mobile Robot Based on Genetically Simulated Annealing Algorithm  12, 36 (2009)Google Scholar
  6. 6.
    Wang, H.B., Yang, W.J., Wang, J.H.: Research on Path Planning for Mobile Robot Based on Grid and Hybrid of GA/SA, vol. 479, pp. 1499–1503. Trans. Tech. Publ. (2012)Google Scholar
  7. 7.
    Hussein, A., Mostafa, H., Badrel-din, M., Sultan, O., Khamis, A.: Metaheuristic optimization approach to mobile robot path planning. In: 2012 International Conference on Engineering and Technology (ICET), pp. 1–6. IEEE (2012)Google Scholar
  8. 8.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)Google Scholar
  9. 9.
    Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intelligence 1(1), 33–57 (2007)CrossRefGoogle Scholar
  10. 10.
    Liu, W.K.Z.H.Y., Zhi-lei, C.: Path Planning for Robots Based on Quantum-behaved Particle Swarm Optimization. Microcomputer Information 11, 066 (2010)Google Scholar
  11. 11.
    Huang, H.C., Tsai, C.C.: Global path planning for autonomous robot navigation using hybrid metaheuristic GA-PSO algorithm. In: 2011 Proceedings. SICE Annual Conference (SICE), pp. 1339–1343. IEEE (2011)Google Scholar
  12. 12.
    Qian-Zhi, M., Xiu-Juan, L.: The application of hybrid orthogonal particle swarm optimization in robotic path planning. In: 2010 Sixth International Conference on Natural Computation (ICNC), vol. 7, pp. 3536–3540. IEEE (2010)Google Scholar
  13. 13.
    Li, W., Wang, G.Y.: Application of improved PSO in mobile robotic path planning. In: 2010 International Conference on Intelligent Computing and Integrated Systems (ICISS), pp. 45–48. IEEE (2010)Google Scholar
  14. 14.
    Ma, Y., Zamirian, M., Yang, Y., Xu, Y., Zhang, J.: Path Planning for Mobile Objects in Four-Dimension Based on Particle Swarm Optimization Method with Penalty Function. Mathematical Problems in Engineering (2013) Google Scholar
  15. 15.
    Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Computational Intelligence Magazine 1(4), 28–39 (2006)Google Scholar
  16. 16.
    Chaari, I., Koubaa, A., Bennaceur, H., Trigui, S., Al-Shalfan, K.: smartPATH: A hybrid ACO-GA algorithm for robot path planning. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2012)Google Scholar
  17. 17.
    Xianlun, T.A.N.G., et al.: Ant Colony Optimization Based on Maximum Selection Probability for Path Planning in Unknown Environment. Journal of Computational Information Systems 8(24), 10325–10332 (2012)Google Scholar
  18. 18.
    Wang, P.D., Tang, G.Y., Li, Y., Yang, X.X.: Ant colony algorithm using endpoint approximation for robot path planning, pp. 4960–4965. IEEE (2012)Google Scholar
  19. 19.
    Luo, D.L., Wu, S.X.: Ant colony optimization with potential field heuristic for robot path planning. Systems Engineering and Electronics 32(6), 1277–1280 (2010)Google Scholar
  20. 20.
    Wu, Y.F., Zhang, X.X., Wu, J.Q.: Using Cellular Ant Colony Algorithm for Path-Planning of Robots. Applied Mechanics and Materials 182, 1776–1780 (2012)CrossRefGoogle Scholar
  21. 21.
    Qiao, R., Zhang, X.B., Guang-xing, Z.H.A.O.: Global Path Planning of Mobile Robot Based on Improved Ant Colony Algorithm. Journal of Anhui University of Technology (Natural Science) 1 (2009)Google Scholar
  22. 22.
    Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learning (1989) Google Scholar
  23. 23.
    Lucas, D., Crane, C.: Development of a multi-resolution parallel genetic algorithm for autonomous robotic path planning. In: 2012 12th International Conference on Control, Automation and Systems (ICCAS), pp. 1002–1006 (2012)Google Scholar
  24. 24.
    Liu, C., et al.: Dynamic path planning for mobile robot based on improved genetic algorithm. Chinese Journal of Electronics 19(2), 2010–2014 (2010)Google Scholar
  25. 25.
    Hua, J.M.W.H.Z., Xingzhe, X.: Applying improved genetic algorithm to global path planning for mobile robot. Computer Applications and Software 8, 033 (2011)Google Scholar
  26. 26.
    Yan, X.: An Improved Robot Path Planning Algorithm. TELKOMNIKA (Telecommunication, Computing, Electronics and Control) 10(4), 629–636 (2012)CrossRefGoogle Scholar
  27. 27.
    Xu, X., Xie, J., Xie, K.: Path planning and obstacle-avoidance for soccer robot based on artificial potential field and genetic algorithm. In: The Sixth World Congress Intelligent Control and Automation, WCICA 2006, vol. 1, pp. 3494–3498 (2006)Google Scholar
  28. 28.
    Schrijver, A.: Theory of linear and integer programming. Wiley (1998)Google Scholar
  29. 29.
    Geem, Z.W., Kim, J.H., Loganathan, G.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Faculty of Computer ScienceUniversity “Goce Delcev” - StipStipMacedonia

Personalised recommendations