Optimization Techniques for Robot Path Planning

  • Aleksandar ShurbevskiEmail author
  • Noriaki Hirosue
  • Hiroshi Nagamochi
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 231)


We present a method for robot path planning in the robot’s configuration space, in the presence of fixed obstacles. Our method employs both combinatorial and gradient-based optimization techniques, but most distinguishably, it employs a Multi-sphere Scheme purposefully developed for two and three-dimensional packing problems. This is a singular feature which not only enables us to use a particularly high-grade implementation of a packing-problem solver, but can also be utilized as a model to reduce computational effort with other path-planning or obstacle avoidance methods.


Robot path planning combinatorial optimization multi-sphere scheme packing problems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Norwell (1991)CrossRefGoogle Scholar
  2. 2.
    Schwartz, J.T., Sharir, M.: On the piano movers’ problem. II. General techniques for computing topological troperties of real algebraic manifolds. Advances in Applied Mathematics 4, 298–351 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Reif, J.R.: Complexity of the generalized movers’ problem. In: Schwartz, J.T., Sharir, M., Hopcroft, J. (eds.) Planning, Geometry and Complexity of Robot Motion. Ablex Publishing Corporation (1987)Google Scholar
  4. 4.
    Amato, N.M., Song, G.: Using motion planning to study protein folding pathways. Journal of Computational Biology 9, 149–168 (2002)CrossRefGoogle Scholar
  5. 5.
    Song, G.: A Motion Planning Approach to Protein Folding. PhD thesis, Texas A&M University (2003)Google Scholar
  6. 6.
    Canny, J.F.: The Complexity of Robot Motion Planning. The MIT Press (1988)Google Scholar
  7. 7.
    Reif, J.R., Sharir, M.: Motion planning in the presence of moving obstacles. Journal of the ACM 41, 764–790 (1994)zbMATHCrossRefGoogle Scholar
  8. 8.
    Ahrikencheikh, C., Seireg, A.A.: Optimized-Motion Planning: Theory and Implementation, 1st edn. John Wiley & Sons, Inc., New York (1994)Google Scholar
  9. 9.
    Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G.A., Burgardand, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion. The MIT Press (2005)Google Scholar
  10. 10.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall (2010)Google Scholar
  11. 11.
    Schwartz, J.T., Sharir, M., Hopcroft, J.: Planning, Geometry and Complexity of Robot Motion. Ablex Publishing Corporation (1987)Google Scholar
  12. 12.
    Barraquand, J., Kavraki, L., Latombe, J.C., Motwani, R., Li, T.Y., Raghavan, P.: A random sampling scheme for path planning. The International Journal of Robotics Research 16, 759–774 (1997)CrossRefGoogle Scholar
  13. 13.
    Ratliff, N., Zucker, M., Bagnell, J.A., Srinivasa, S.: CHOMP: gradient techniques for efficient motion planning. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 489–494. IEEE (2009)Google Scholar
  14. 14.
    Geraerts, R., Overmars, M.H.: A comparative study of probabilistic roadmap planners. In: Boissonnat, J., Burdick, J., Goldberg, K., Hutchinson, S. (eds.) Algorithmic Foundations of Robotics, vol. 7, pp. 43–58. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Kavraki, L., Švestka, P., Latombe, J.C., Overmars, M.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. In: IEEE International Conference on Robotics and Automation, pp. 566–580. IEEE (1996)Google Scholar
  16. 16.
    Imamichi, T., Nagamochi, H.: A multi-sphere scheme for 2D and 3D packing problems. In: Stützle, T., Birattari, M., Hoos, H.H. (eds.) SLS 2007. LNCS, vol. 4638, pp. 207–211. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Imamichi, T., Nagamochi, H.: Performance analysis of a collision detection algorithm of spheres based on slab partitioning. IEICE Fundamentals of Electronics, Communications and Computer Sciences E91-A, 2308–2313 (2008)Google Scholar
  18. 18.
    Imamichi, T.: Nonlinear Programming Based Algorithms to Cutting and Packing Problems. Doctoral Dissertation, Kyoto University (2009)Google Scholar
  19. 19.
    Lozano-Perez, T.: Spatial planning: A configuration space approach. IEEE Transactions on Computers 100, 108–120 (1983)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kavraki, L., Kolountzakis, M.N., Latombe, J.C.: Analysis of probabilistic roadmaps for path planning. IEEE Transactions on Robotics and Automation 14, 166–171 (1998)CrossRefGoogle Scholar
  21. 21.
    Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer (2006)Google Scholar
  22. 22.
    O’Rourke, J.: Computational Geometry in C, 2nd edn. Cambridge University Press (1998)Google Scholar
  23. 23.
    Hubbard, P.M.: Approximating polyhedra with spheres for time-critical collision detection. ACM Transactions on Graphics 15, 179–219 (1996)CrossRefGoogle Scholar
  24. 24.
    Imamichi, T., Nagamochi, H.: Designing algorithms with multi-sphere scheme. In: Informatics Education and Research for Knowledge-Circulating Society, ICKS 2008, pp. 125–130. IEEE (2008)Google Scholar
  25. 25.
    Hiramatsu, M.: Approximating objects with spheres in multi-sphere scheme. Master’s thesis, Kyoto Univeristy (2010)Google Scholar
  26. 26.
    Jacquenot, G., Bennis, F., Maisonneuve, J.J., Wenger, P.: 2D multi-objective placement algorithm for free-form components. ArXiv e-prints (November 2009)Google Scholar
  27. 27.
    Bénabès, J., Bennis, F., Poirson, E., Ravaut, Y.: Interactive optimization strategies for layout problems. International Journal on Interactive Design and Manufacturing (IJIDeM) 4, 181–190 (2010)CrossRefGoogle Scholar
  28. 28.
    Beppu, K.: An application of multi-sphere scheme to robot path planning. Master’s thesis, Kyoto University (2012)Google Scholar
  29. 29.
    Hirosue, N.: An application of multi-sphere scheme to robot path planning with 3D-motion. Master’s thesis, Kyoto University (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Aleksandar Shurbevski
    • 1
    Email author
  • Noriaki Hirosue
    • 1
  • Hiroshi Nagamochi
    • 1
  1. 1.Department of Applied Mathematics and PhysicsKyoto UniversitySakyo-kuJapan

Personalised recommendations