Optimizing an Artificial Dorsal Stream on Purpose for Visual Attention

  • Gustavo Olague
  • León Dozal
  • Eddie Clemente
  • Arturo Ocampo
Part of the Studies in Computational Intelligence book series (SCI, volume 500)

Abstract

Visual attention is a natural process performed by the brain, specifically by the dorsal stream, whose functionality is to perceive salient visual features. This chapter is devoted to the task of evolving an artificial dorsal stream (ADS) using the brain programming strategy. The idea is to state the problem of visual attention, normally studied as two parts: bottom-up and top-down, in terms of a unified approach following a teleological framework. Indeed, in this work visual attention is explained as a single mechanism that adapts itself according to a given task. In this way, brain programming is used to design ADSs. Experimental results show that this new approach can contrive ADSs useful in the solution of “top-down and bottom-up” visual attention problems. In particular, we present a solution to the size and missing pop-out problems that were unsolved previously in the literature.

Keywords

brain programing visual attention genetic programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atmosukarto, I., Shapiro, L.G., Heike, C.: The use of genetic programming for learning 3d craniofacial shape quantifications. In: Proceedings of the 2010 20th International Conference on Pattern Recognition, ICPR 2010, pp. 2444–2447 (2010)Google Scholar
  2. 2.
    Ayala, F.J.: Teleological explanations in evolutionary biology. Philosophy of Science 37(1), 1–15 (1970)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baluch, F., Itti, L.: Mechanisms of top-down attention. Trends in Neurosciences 34(4), 210–224 (2011)CrossRefGoogle Scholar
  4. 4.
    Barton, R.A.: Visual specialization and brain evolution in primates. Proceedings of the Royal Society of London Series B-Biological Sciences 265(1409), 1933–1937 (1998)CrossRefGoogle Scholar
  5. 5.
    Borji, A., Sihite, D., Itti, L.: Computational modeling of top-down visual attention in interactive environments. In: Proceedings of the British Machine Vision Conference, pp. 85.1–85.12. BMVA Press (2011)Google Scholar
  6. 6.
    Corbetta, M., Shulman, G.L.: Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience 3(3), 201–215 (2002)CrossRefGoogle Scholar
  7. 7.
    Desimone, R., Duncan, J.: Neural mechanisms of selective visual attention. Annual Reviews 18, 193–222 (1995)Google Scholar
  8. 8.
    Feldman, J.A.: Four frames suffice: A provisional model of vision and space. Behavioral and Brain Sciences 8(02), 265–289 (1985)CrossRefGoogle Scholar
  9. 9.
    Frintrop, S.: VOCUS: A Visual Attention System for Object Detection and Goal-Directed Search. LNCS (LNAI), vol. 3899. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Gottlieb, J.: From thought to action: the parietal cortex as a bridge between perception, action, and cognition. Neuron 53(1), 9–16 (2007)CrossRefGoogle Scholar
  11. 11.
    Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurons in the cat’s striate cortex. Journal of Physiology 148, 574–591 (1959)Google Scholar
  12. 12.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  13. 13.
    Kant, I.: Critique of the power of judgment. Cambridge University Press (2000)Google Scholar
  14. 14.
    Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology 4(4), 219–227 (1985)Google Scholar
  15. 15.
    Lennox, J.G.: Darwing was a teleologist. Biology and Philosophy 8, 409–421 (1993)CrossRefGoogle Scholar
  16. 16.
    Milanese, R.: Detecting salient regions in an image: from biological evidence to computer implementation. PhD thesis, Department of Computer Science, University of Genova, Switzerland (December 1993)Google Scholar
  17. 17.
    Milner, D., Goodale, M.A.: The visual brain in action, 2nd edn. Oxford University Press (December 1995)Google Scholar
  18. 18.
    Olague, G.: Evolutionary Computer Vision. In: The First Footprints. Springer (to appear)Google Scholar
  19. 19.
    Oliva, A., Torralba, A., Castelhano, M., Henderson, J.: Top-down control of visual attention in object detection. In: International Conference on Image Processing, vol. 1, pp. 253–256 (September 2003)Google Scholar
  20. 20.
    Pérez, C.B., Olague, G.: Learning invariant region descriptor operators with genetic programming and the F-measure. In: Pattern Recognition ICPR 19th International Conference, pp. 1–4 (2008)Google Scholar
  21. 21.
    Peters, R.J., Itti, L.: Beyond bottom-up: Incorporating task-dependent influences into a computational model of spatial attention. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Minneapolis, MN (June 2007)Google Scholar
  22. 22.
    Posner, M.I., Snyder, C.R., Davidson, B.J.: Attention and the detection of signals. Journal of Experimental Psychology 109(2), 160–174 (1980)CrossRefGoogle Scholar
  23. 23.
    Rensink, R.A.: The dynamic representation of scenes. Visual Cognition (2000)Google Scholar
  24. 24.
    Rensink, R.A.: Seeing, sensing and scrutinizing. Vision Research 40, 1469–1487 (2000)CrossRefGoogle Scholar
  25. 25.
    Trehub, A.: The Cognitive Brain. Introduces. MIT Press, Cambridge (1991)Google Scholar
  26. 26.
    Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cognitive Psychology 12(1), 97–136 (1980)CrossRefGoogle Scholar
  27. 27.
    Ungerleider, L.G., Mishkin, M.: Two cortical visual systems. In: Ingle, D.J., Goodale, M.A. (eds.) Analysis of Visual Behavior, pp. 549–585. MIT Press, Cambridge (1982)Google Scholar
  28. 28.
    Walther, D., Koch, C.: Modeling attention to salient proto-objects. Neural Networks 19(9), 1395–1407 (2006)MATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Gustavo Olague
    • 1
  • León Dozal
    • 1
  • Eddie Clemente
    • 1
    • 3
  • Arturo Ocampo
    • 2
  1. 1.CICESE, Carretera Ensenada-TijuanaEnsenadaMéxico
  2. 2.Facultad de Estudios Superiores AragónUNAM.Nezahualcoyotl. Edo. Mex.México
  3. 3.Tecnológico de Estudios Superiores de Ecatepec, Avenida Tecnológico S/N, Esq.Ecatepec de MorelosMéxico

Personalised recommendations