Skip to main content

Direct Numerical Simulations of Film Cooling in a Supersonic Boundary-Layer Flow on Massively-Parallel Supercomputers

  • Conference paper
  • First Online:

Abstract

Future rocket-nozzle extensions have to be thermally protected by a film of cooling gas. Here, the cooling film is generated by wall-parallel cooling-gas injection through a backward facing step. In a first step, a generic laminar flat-plate boundary-layer flow with external Mach number 2.6 and zero streamwise pressure gradient is used, where air is employed as hot and cooling gas. Direct numerical simulations are performed allowing for the reliable detection of any enhanced laminar-flow instability. Using compact finite differences or compact data filtering, tridiagonal sets of equations have to be solved employing the pipelined Thomas algorithm in order to compute various spatial derivatives or low-pass filtered data. In contrast to the NEC-SX8/9 vector machines with few, powerful compute nodes the solution of this tridiagonal systems turned out to be a major bottleneck on the massively parallel Cray-XE6 system. In order to avoid processor idling fully explicit and sub-domain compact finite differences are implemented and applied to the wall-parallel cooling-gas injection problem. The numerical results and performance data on the CRAY-XE6 system are compared to the regular, globally compact finite-difference scheme.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aupoix, B., Mignosi, A., Viala, S., Bouvier, F., Gaillard, R.: Experimental and Numerical Study of Supersonic Film Cooling. AIAA J. 36/6, 915–923 (1998) doi: 10.2514/2.495

    Google Scholar 

  2. Babucke, A., Linn, J., Kloker, M.J., Rist, U.: Direct Numerical Simulation of Shear Flow Phenomena on Parallel Vector Computers. In: M. Resch et al. (eds) High Performance Computing on Vector Systems, 229–247 (2003) doi: 10.1007/3-540-35074-8_16

    Google Scholar 

  3. Babucke, A.: Direct Numerical Simulation of Noise Generation Mechanisms in the Mixing Layer of a Jet. PhD Thesis, University of Stuttgart, Germany (2009)

    Google Scholar 

  4. Dahmen, W., Gotzen, T., Müller, S.: Numerical Simulation of Cooling Gas Injection Using Adaptive Multiscale Techniques. V European Conference on Computational Fluid Dynamics, Lisbon, Portugal (2010)

    Google Scholar 

  5. Gülhan, A., Braun, S.: An Experimental Study on the Efficiency of Transpiration Cooling in Laminar and Turbulent Hypersonic Flows. Exp. Fluids 50/3, 509–525 (2011) doi: 10.1007/s00348-010-0945-6

    Google Scholar 

  6. Haidn, O.J.: Advanced Rocket Engines. In: Advances on Propulsion Technology for High-Speed Aircraft, 6-1–6-40 (1992)

    Google Scholar 

  7. Heufer, K.A., Olivier, H.: Experimental Study of Active Cooling in 8 Laminar Hypersonic Flows. In: Gülhan A. (eds) RESPACE - Key Technologies for Reusable Space Systems, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 98 132–150 (2008) doi: 10.1007/978-3-540-77819-6_8

    Article  Google Scholar 

  8. Heufer, K.A., Olivier, H.: Experimental and Numerical Study of Cooling Gas Injection in Laminar Supersonic Flow. AIAA J. 46/11, 2741–2751 (2008) doi: 10.2514/1.34218

    Google Scholar 

  9. Juhany, K.A., Hunt, M.L.: Flowfield Measurement in Supersonic Film Cooling Including the Effect of Shock-Wave Interaction. AIAA J. 32/3, 578–585 (1994) doi: 10.2514/3.12024

    Google Scholar 

  10. Kloker, M.: A Robust High-Resolution Split-Type Compact FD Scheme for Spatial Direct Numerical Simulation of Boundary-Layer Transition. Appl. Sci. Res. 59, 353–377 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Konopka, M., Meinke, M., Schröder, W.: Large Eddy Simulation of Supersonic Film Cooling at Finite Pressure Gradients. In: W.E. Nagel et al. (eds) High Performance Computing in Science and Engineering ’11, 353–369 (2011) doi: 10.1007/978-3-642-23869-7_26

    Google Scholar 

  12. Lele, S.K.: Compact Finite Difference Schmes with Spectral-like Resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Linn, J., Kloker, M.J.: Numerical Investigations of Film Cooling. In: Gülhan A. (eds) RESPACE - Key Technologies for Reusable Space Systems, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 98 151–169 (2008) doi: 10.1007/978-3-540-77819-6_9

    Article  Google Scholar 

  14. Linn, J., Kloker, M.J.: Effects of Wall-Temperature Conditions on Effusion Cooling in a Mach-2.67 Boundary Layer. AIAA J. 49/2, 299–307 (2011) doi:10.2514/1.J050383

    Google Scholar 

  15. Linn, J.: Numerical Investigations of Film Cooling in Laminar Supersonic and Hypersonic Boundary-Layer Flows (Numerische Untersuchungen zur Filmkühlung in laminaren Über- und Hyperschallgrenzschichtströmungen). PhD Thesis, University of Stuttgart, Germany (2011)

    Google Scholar 

  16. Povitsky, A., Morris, P.: A Higher-Order Compact Method in Space and Time Based on Parallel Implementation of the Thomas Algorithm. J. Comput. Phys. 161, 182–203 (2000) doi:10.1006/jcph.2000.6497

    Article  MathSciNet  MATH  Google Scholar 

  17. Visbal, M.R., Gaitonde, D.V.: On the use of High-Order Finite Difference Schemes on Curvilinear and Deforming Meshes. J. Comput. Phys. 181, 155–185 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. White, F.M.: Viscous Fluid Flow. McGraw-Hill (1991)

    Google Scholar 

  19. Winterfeldt, L., Laumert, B., Tano, R., James, P., Geneau, F., Blasi, R., Hagemann, G.: Redesign of the Vulcain 2 Nozzle Extension. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 2005–4536, Tucson, AZ, USA (2005)

    Google Scholar 

Download references

Acknowledgements

This work was funded by the German Research Foundation (Deutsche Forschungsgemeinschaft) in the framework of the Collaborative Research Center SFB/TRR 40: Fundamental technologies for the development of future space-transport-system components under high thermal and mechanical loads. Computational resources were kindly provided by the Federal High Performance Computing Center Stuttgart (HLRS) within project LAMTUR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Keller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Keller, M., Kloker, M.J. (2013). Direct Numerical Simulations of Film Cooling in a Supersonic Boundary-Layer Flow on Massively-Parallel Supercomputers. In: Resch, M., Bez, W., Focht, E., Kobayashi, H., Kovalenko, Y. (eds) Sustained Simulation Performance 2013. Springer, Cham. https://doi.org/10.1007/978-3-319-01439-5_8

Download citation

Publish with us

Policies and ethics