Affenzeller, M., Wagner, S.: SASEGASA: A new generic parallel evolutionary algorithm for achieving highest quality results. Journal of Heuristics - Special Issue on New Advances on Parallel Meta-Heuristics for Complex Problems 10, 239–263 (2004)
Google Scholar
Affenzeller, M., Wagner, S.: Offspring selection: A new self-adaptive selection scheme for genetic algorithms. In: Ribeiro, B., Albrecht, R.F., Dobnikar, A., Pearson, D.W., Steele, N.C. (eds.) Adaptive and Natural Computing Algorithms, Springer Computer Science, pp. 218–221. Springer (2005)
Google Scholar
Affenzeller, M., Wagner, S., Winkler, S.: Goal-oriented preservation of essential genetic information by offspring selection. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), vol. 2, pp. 1595–1596. Association for Computing Machinery, ACM (2005)
Google Scholar
Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic Programming - Modern Concepts and Practical Applications. Chapman & Hall / CRC (2009)
Google Scholar
Alba, E., Garca-Nieto, J., Jourdan, L., Talbi, E.G.: Gene selection in cancer classification using PSO/SVM and GA/SVM hybrid algorithms. In: IEEE Congress on Evolutionary Computation 2007, pp. 284–290 (2007)
Google Scholar
Alberts, B.: Leukocyte functions and percentage breakdown. In: Molecular Biology of the Cell. NCBI Bookshelf (2005)
Google Scholar
Andriole, G.L., Crawford, E.D., Grubband, R.L., Buys, S.S., Chia, D., Church, T.R., et al.: Mortality results from a randomized prostate-cancer screening trial. New England Journal of Medicine 360(13), 1310–1319 (2009)
CrossRef
Google Scholar
Ariew, R.: Ockham’s Razor: A Historical and Philosophical Analysis of Ockham’s Principle of Parsimony. University of Illinois, Champaign-Urbana (1976)
Google Scholar
Banzhaf, W., Lasarczyk, C.: Genetic programming of an algorithmic chemistry. In: O’Reilly, U., Yu, T., Riolo, R., Worzel, B. (eds.) Genetic Programming Theory and Practice II, pp. 175–190. Ann Arbor (2004)
Google Scholar
Bitterlich, N., Schneider, J.: Cut-off-independent tumour marker evaluation using ROC approximation. Anticancer Research 27, 4305–4310 (2007)
Google Scholar
Brown, G.: A new perspective for information theoretic feature selection. In: International Conference on Artificial Intelligence and Statistics, pp. 49–56 (2009)
Google Scholar
Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001), Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm
Cheng, H., Qin, Z., Feng, C., Wang, Y., Li, F.: Conditional mutual information-based feature selection analyzing for synergy and redundancy. Electronics and Telecommunications Research Institute (ETRI) Journal 33(2) (2011)
Google Scholar
Cover, T.M., Thomas, J.A.: Elements of information theory. Wiley-Interscience, New York (1991)
CrossRef
MATH
Google Scholar
Duch, W.: Feature Extraction: Foundations and Applications. Springer (2006)
Google Scholar
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley Interscience (2000)
Google Scholar
Duffy, M.J., Crown, J.: A personalized approach to cancer treatment: how biomarkers can help. Clinical Chemistry 54(11), 1770–1779 (2008)
CrossRef
Google Scholar
Efroymson, M.A.: Multiple regression analysis. Mathematical Methods for Digital Computers. Wiley (1960)
Google Scholar
Eiben, A., Smith, J.: Introduction to Evolutionary Computation. Natural Computing Series. Springer, Heidelberg (2003)
CrossRef
Google Scholar
El Akadi, A., El Ouardighi, A., Aboutajdine, D.: A powerful feature selection approach based on mutual information. International Journal of Computer Science and Network Security 8(4), 116–121 (2008)
Google Scholar
Fleuret, F.: Fast binary feature selection with conditional mutual information. The Journal of Machine Learning Research 5, 1531–1555 (2004),
http://dl.acm.org/citation.cfm?id=1005332.1044711
MathSciNet
MATH
Google Scholar
Gold, P., Freedman, S.O.: Demonstration of tumor-specific antigens in human colonic carcinomata by immunological tolerance and absorption techniques. The Journal of Experimental Medicine 121, 439–462 (1965)
CrossRef
Google Scholar
Hammarstrom, S.: The carcinoembryonic antigen (cea) family: structures, suggested functions and expression in normal and malignant tissues. Seminars in Cancer Biology 9, 67–81 (1999)
CrossRef
Google Scholar
Holland, J.H.: Adaption in Natural and Artifical Systems. University of Michigan Press (1975)
Google Scholar
Keshaviah, A., Dellapasqua, S., Rotmensz, N., Lindtner, J., Crivellari, D., et al.: Ca15-3 and alkaline phosphatase as predictors for breast cancer recurrence: a combined analysis of seven international breast cancer study group trials. Annals of Oncology 18(4), 701–708 (2007)
CrossRef
Google Scholar
Koepke, J.A.: Molecular marker test standardization. Cancer 69, 1578–1581 (1992)
CrossRef
Google Scholar
Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, vol. 2, pp. 1137–1143. Morgan Kaufmann (1995)
Google Scholar
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. The MIT Press (1992)
Google Scholar
Kronberger, G.K.: Symbolic regression for knowledge discovery - bloat, overfitting, and variable interaction networks. Ph.D. thesis, Institute for Formal Models and Verification, Johannes Kepler University Linz (2010)
Google Scholar
LaFleur-Brooks, M.: Exploring Medical Language: A Student-Directed Approach, 7th edn. Mosby Elsevier, St. Louis (2008)
Google Scholar
Lai, R.S., Chen, C.C., Lee, P.C., Lu, J.Y.: Evaluation of cytokeratin 19 fragment (cyfra 21-1) as a tumor marker in malignant pleural effusion. Japanese Journal of Clinical Oncology 29(9), 421–424 (1999)
CrossRef
Google Scholar
Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2002)
CrossRef
MATH
Google Scholar
Ljung, L.: System Identification – Theory For the User, 2nd edn. PTR Prentice Hall, Upper Saddle River (1999)
Google Scholar
Maton, A., Hopkins, J., McLaughlin, C.W., Johnson, S., Warner, M.Q., LaHart, D., Wright, J.D.: Human Biology and Health. Prentice Hall, Englewood Cliffs (1993)
Google Scholar
Meyer, P., Bontempi, G.: On the use of variable complementarity for feature selection in cancer classification. In: Evolutionary Computation and Machine Learning in Bioinformatics, pp. 91–102 (2006)
Google Scholar
Mizejewski, G.J.: Alpha-fetoprotein structure and function: relevance to isoforms, epitopes, and conformational variants. Experimental Biology and Medicine 226(5), 377–408 (2001)
Google Scholar
Nelles, O.: Nonlinear System Identification. Springer, Heidelberg (2001)
CrossRef
MATH
Google Scholar
Niv, Y.: Muc1 and colorectal cancer pathophysiology considerations. World Journal of Gastroenterology 14(14), 2139–2141 (2008)
CrossRef
Google Scholar
Osman, N., O’Leary, N., Mulcahy, E., Barrett, N., Wallis, F., Hickey, K., Gupta, R.: Correlation of serum ca125 with stage, grade and survival of patients with epithelial ovarian cancer at a single centre. Irish Medical Journal 101(8), 245–247 (2008)
Google Scholar
Rai, A.J., Zhang, Z., Rosenzweig, J., Ming Shih, I., Pham, T., Fung, E.T., Sokoll, L.J., Chan, D.W.: Proteomic approaches to tumor marker discovery. Archives of Pathology & Laboratory Medicine 126(12), 1518–1526 (2002)
Google Scholar
Rosen, D.G., Wang, L., Atkinson, J.N., Yu, Y., Lu, K.H., Diamandis, E.P., Hellstrom, I., Mok, S.C., Liu, J., Bast, R.C.: Potential markers that complement expression of ca125 in epithelial ovarian cancer. Gynecologic Oncology 99(2), 267–277 (2005)
CrossRef
Google Scholar
Shannon, C.E.: A mathematical theory of communication. The Bell Systems Technical Journal 27, 379–423 (1948)
MathSciNet
MATH
Google Scholar
Tallitsch, R.B., Martini, F., Timmons, M.J.: Human anatomy, 5th edn. Pearson/Benjamin Cummings, San Francisco (2006)
Google Scholar
Tesmer, M., Estevez, P.A.: Amifs: Adaptive feature selection by using mutual information. In: IEEE International Joint Conference on Neural Networks, vol. 1 (2004)
Google Scholar
Thompson, I.M., Pauler, D.K., Goodman, P.J., Tangen, C.M., et al.: Prevalence of prostate cancer among men with a prostate-specific antigen level < = 4.0 ng per milliliter. New England Journal of Medicine 350(22), 2239–2246 (2004)
CrossRef
Google Scholar
Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)
MATH
Google Scholar
Wagner, S.: Heuristic optimization software systems – modeling of heuristic optimization algorithms in the heuristiclab software environment. Ph.D. thesis, Johannes Kepler University Linz (2009)
Google Scholar
Wagner, S., Affenzeller, M.: SexualGA: Gender-specific selection for genetic algorithms. In: Callaos, N., Lesso, W., Hansen, E. (eds.) Proceedings of the 9th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2005). International Institute of Informatics and Systemics, vol. 4, pp. 76–81 (2005)
Google Scholar
Williams, P.W., Gray, H.D.: Gray’s anatomy, 37th edn. C. Livingstone, New York (1989)
Google Scholar
Winkler, S.: Evolutionary system identification - modern concepts and practical applications. Ph.D. thesis, Institute for Formal Models and Verification, Johannes Kepler University Linz (2008)
Google Scholar
Winkler, S., Affenzeller, M., Jacak, W., Stekel, H.: Classification of tumor marker values using heuristic data mining methods. In: Proceedings of the GECCO 2010 Workshop on Medical Applications of Genetic and Evolutionary Computation, MedGEC 2010 (2010)
Google Scholar
Winkler, S., Affenzeller, M., Jacak, W., Stekel, H.: Identification of cancer diagnosis estimation models using evolutionary algorithms - a case study for breast cancer, melanoma, and cancer in the respiratory system. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2010 (2011)
Google Scholar
Winkler, S., Affenzeller, M., Kronberger, G., Kommenda, M., Wagner, S., Jacak, W., Stekel, H.: Feature selection in the analysis of tumor marker data using evolutionary algorithms. In: Proceedings of the 7th International Mediterranean and Latin American Modelling Multiconference, pp. 1–6 (2010)
Google Scholar
Winkler, S., Affenzeller, M., Kronberger, G., Kommenda, M., Wagner, S., Jacak, W., Stekel, H.: On the use of estimated tumor marker classifications in tumor diagnosis prediction - a case study for breast cancer. In: Proceedings of 23rd IEEE European Modeling & Simulation Symposium, EMSS 2011 (2011)
Google Scholar
Yin, B.W., Dnistrian, A., Lloyd, K.O.: Ovarian cancer antigen CA125 is encoded by the MUC16 mucin gene. International Journal of Cancer 98(5), 737–740 (2002)
CrossRef
Google Scholar
Yonemori, K., Ando, M., Taro, T.S., Katsumata, N., Matsumoto, K., Yamanaka, Y., Kouno, T., Shimizu, C., Fujiwara, Y.: Tumor-marker analysis and verification of prognostic models in patients with cancer of unknown primary, receiving platinum-based combination chemotherapy. Journal of Cancer Research and Clinical Oncology 132(10), 635–642 (2006)
CrossRef
Google Scholar
Zhong, L., Zhou, X., Wei, K., Yang, X., Ma, C., Zhang, C., Zhang, Z.: Application of serum tumor markers and support vector machine in the diagnosis of oral squamous cell carcinoma. Shanghai Kou Qiang Yi Xue (Shanghai Journal of Stomatology) 17(5), 457–460 (2008)
Google Scholar