Abstract
In this chapter we present results of empirical research work done on the data based identification of estimation models for tumor markers and cancer diagnoses: Based on patients’ data records including standard blood parameters, tumor markers, and information about the diagnosis of tumors we have trained mathematical models that represent virtual tumor markers and predictors for cancer diagnoses, respectively. We have used a medical database compiled at the Central Laboratory of the General Hospital Linz, Austria, and applied several data based modeling approaches for identifying mathematical models for estimating selected tumor marker values on the basis of routinely available blood values; in detail, estimators for the tumor markers AFP, CA-125, CA15-3, CEA, CYFRA, and PSA have been identified and are discussed here. Furthermore, several data based modeling approaches implemented in HeuristicLab have been applied for identifying estimators for selected cancer diagnoses: Linear regression, k-nearest neighbor learning, artificial neural networks, and support vector machines (all optimized using evolutionary algorithms) as well as genetic programming. The investigated diagnoses of breast cancer, melanoma, and respiratory system cancer can be estimated correctly in up to 81%, 74%, and 91% of the analyzed test cases, respectively; without tumor markers up to 75%, 74%, and 87% of the test samples are correctly estimated, respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Affenzeller, M., Wagner, S.: SASEGASA: A new generic parallel evolutionary algorithm for achieving highest quality results. Journal of Heuristics - Special Issue on New Advances on Parallel Meta-Heuristics for Complex Problems 10, 239–263 (2004)
Affenzeller, M., Wagner, S.: Offspring selection: A new self-adaptive selection scheme for genetic algorithms. In: Ribeiro, B., Albrecht, R.F., Dobnikar, A., Pearson, D.W., Steele, N.C. (eds.) Adaptive and Natural Computing Algorithms, Springer Computer Science, pp. 218–221. Springer (2005)
Affenzeller, M., Wagner, S., Winkler, S.: Goal-oriented preservation of essential genetic information by offspring selection. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), vol. 2, pp. 1595–1596. Association for Computing Machinery, ACM (2005)
Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic Programming - Modern Concepts and Practical Applications. Chapman & Hall / CRC (2009)
Alba, E., Garca-Nieto, J., Jourdan, L., Talbi, E.G.: Gene selection in cancer classification using PSO/SVM and GA/SVM hybrid algorithms. In: IEEE Congress on Evolutionary Computation 2007, pp. 284–290 (2007)
Alberts, B.: Leukocyte functions and percentage breakdown. In: Molecular Biology of the Cell. NCBI Bookshelf (2005)
Andriole, G.L., Crawford, E.D., Grubband, R.L., Buys, S.S., Chia, D., Church, T.R., et al.: Mortality results from a randomized prostate-cancer screening trial. New England Journal of Medicine 360(13), 1310–1319 (2009)
Ariew, R.: Ockham’s Razor: A Historical and Philosophical Analysis of Ockham’s Principle of Parsimony. University of Illinois, Champaign-Urbana (1976)
Banzhaf, W., Lasarczyk, C.: Genetic programming of an algorithmic chemistry. In: O’Reilly, U., Yu, T., Riolo, R., Worzel, B. (eds.) Genetic Programming Theory and Practice II, pp. 175–190. Ann Arbor (2004)
Bitterlich, N., Schneider, J.: Cut-off-independent tumour marker evaluation using ROC approximation. Anticancer Research 27, 4305–4310 (2007)
Brown, G.: A new perspective for information theoretic feature selection. In: International Conference on Artificial Intelligence and Statistics, pp. 49–56 (2009)
Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001), Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
Cheng, H., Qin, Z., Feng, C., Wang, Y., Li, F.: Conditional mutual information-based feature selection analyzing for synergy and redundancy. Electronics and Telecommunications Research Institute (ETRI) Journal 33(2) (2011)
Cover, T.M., Thomas, J.A.: Elements of information theory. Wiley-Interscience, New York (1991)
Duch, W.: Feature Extraction: Foundations and Applications. Springer (2006)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley Interscience (2000)
Duffy, M.J., Crown, J.: A personalized approach to cancer treatment: how biomarkers can help. Clinical Chemistry 54(11), 1770–1779 (2008)
Efroymson, M.A.: Multiple regression analysis. Mathematical Methods for Digital Computers. Wiley (1960)
Eiben, A., Smith, J.: Introduction to Evolutionary Computation. Natural Computing Series. Springer, Heidelberg (2003)
El Akadi, A., El Ouardighi, A., Aboutajdine, D.: A powerful feature selection approach based on mutual information. International Journal of Computer Science and Network Security 8(4), 116–121 (2008)
Fleuret, F.: Fast binary feature selection with conditional mutual information. The Journal of Machine Learning Research 5, 1531–1555 (2004), http://dl.acm.org/citation.cfm?id=1005332.1044711
Gold, P., Freedman, S.O.: Demonstration of tumor-specific antigens in human colonic carcinomata by immunological tolerance and absorption techniques. The Journal of Experimental Medicine 121, 439–462 (1965)
Hammarstrom, S.: The carcinoembryonic antigen (cea) family: structures, suggested functions and expression in normal and malignant tissues. Seminars in Cancer Biology 9, 67–81 (1999)
Holland, J.H.: Adaption in Natural and Artifical Systems. University of Michigan Press (1975)
Keshaviah, A., Dellapasqua, S., Rotmensz, N., Lindtner, J., Crivellari, D., et al.: Ca15-3 and alkaline phosphatase as predictors for breast cancer recurrence: a combined analysis of seven international breast cancer study group trials. Annals of Oncology 18(4), 701–708 (2007)
Koepke, J.A.: Molecular marker test standardization. Cancer 69, 1578–1581 (1992)
Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, vol. 2, pp. 1137–1143. Morgan Kaufmann (1995)
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. The MIT Press (1992)
Kronberger, G.K.: Symbolic regression for knowledge discovery - bloat, overfitting, and variable interaction networks. Ph.D. thesis, Institute for Formal Models and Verification, Johannes Kepler University Linz (2010)
LaFleur-Brooks, M.: Exploring Medical Language: A Student-Directed Approach, 7th edn. Mosby Elsevier, St. Louis (2008)
Lai, R.S., Chen, C.C., Lee, P.C., Lu, J.Y.: Evaluation of cytokeratin 19 fragment (cyfra 21-1) as a tumor marker in malignant pleural effusion. Japanese Journal of Clinical Oncology 29(9), 421–424 (1999)
Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2002)
Ljung, L.: System Identification – Theory For the User, 2nd edn. PTR Prentice Hall, Upper Saddle River (1999)
Maton, A., Hopkins, J., McLaughlin, C.W., Johnson, S., Warner, M.Q., LaHart, D., Wright, J.D.: Human Biology and Health. Prentice Hall, Englewood Cliffs (1993)
Meyer, P., Bontempi, G.: On the use of variable complementarity for feature selection in cancer classification. In: Evolutionary Computation and Machine Learning in Bioinformatics, pp. 91–102 (2006)
Mizejewski, G.J.: Alpha-fetoprotein structure and function: relevance to isoforms, epitopes, and conformational variants. Experimental Biology and Medicine 226(5), 377–408 (2001)
Nelles, O.: Nonlinear System Identification. Springer, Heidelberg (2001)
Niv, Y.: Muc1 and colorectal cancer pathophysiology considerations. World Journal of Gastroenterology 14(14), 2139–2141 (2008)
Osman, N., O’Leary, N., Mulcahy, E., Barrett, N., Wallis, F., Hickey, K., Gupta, R.: Correlation of serum ca125 with stage, grade and survival of patients with epithelial ovarian cancer at a single centre. Irish Medical Journal 101(8), 245–247 (2008)
Rai, A.J., Zhang, Z., Rosenzweig, J., Ming Shih, I., Pham, T., Fung, E.T., Sokoll, L.J., Chan, D.W.: Proteomic approaches to tumor marker discovery. Archives of Pathology & Laboratory Medicine 126(12), 1518–1526 (2002)
Rosen, D.G., Wang, L., Atkinson, J.N., Yu, Y., Lu, K.H., Diamandis, E.P., Hellstrom, I., Mok, S.C., Liu, J., Bast, R.C.: Potential markers that complement expression of ca125 in epithelial ovarian cancer. Gynecologic Oncology 99(2), 267–277 (2005)
Shannon, C.E.: A mathematical theory of communication. The Bell Systems Technical Journal 27, 379–423 (1948)
Tallitsch, R.B., Martini, F., Timmons, M.J.: Human anatomy, 5th edn. Pearson/Benjamin Cummings, San Francisco (2006)
Tesmer, M., Estevez, P.A.: Amifs: Adaptive feature selection by using mutual information. In: IEEE International Joint Conference on Neural Networks, vol. 1 (2004)
Thompson, I.M., Pauler, D.K., Goodman, P.J., Tangen, C.M., et al.: Prevalence of prostate cancer among men with a prostate-specific antigen level < = 4.0 ng per milliliter. New England Journal of Medicine 350(22), 2239–2246 (2004)
Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)
Wagner, S.: Heuristic optimization software systems – modeling of heuristic optimization algorithms in the heuristiclab software environment. Ph.D. thesis, Johannes Kepler University Linz (2009)
Wagner, S., Affenzeller, M.: SexualGA: Gender-specific selection for genetic algorithms. In: Callaos, N., Lesso, W., Hansen, E. (eds.) Proceedings of the 9th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2005). International Institute of Informatics and Systemics, vol. 4, pp. 76–81 (2005)
Williams, P.W., Gray, H.D.: Gray’s anatomy, 37th edn. C. Livingstone, New York (1989)
Winkler, S.: Evolutionary system identification - modern concepts and practical applications. Ph.D. thesis, Institute for Formal Models and Verification, Johannes Kepler University Linz (2008)
Winkler, S., Affenzeller, M., Jacak, W., Stekel, H.: Classification of tumor marker values using heuristic data mining methods. In: Proceedings of the GECCO 2010 Workshop on Medical Applications of Genetic and Evolutionary Computation, MedGEC 2010 (2010)
Winkler, S., Affenzeller, M., Jacak, W., Stekel, H.: Identification of cancer diagnosis estimation models using evolutionary algorithms - a case study for breast cancer, melanoma, and cancer in the respiratory system. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2010 (2011)
Winkler, S., Affenzeller, M., Kronberger, G., Kommenda, M., Wagner, S., Jacak, W., Stekel, H.: Feature selection in the analysis of tumor marker data using evolutionary algorithms. In: Proceedings of the 7th International Mediterranean and Latin American Modelling Multiconference, pp. 1–6 (2010)
Winkler, S., Affenzeller, M., Kronberger, G., Kommenda, M., Wagner, S., Jacak, W., Stekel, H.: On the use of estimated tumor marker classifications in tumor diagnosis prediction - a case study for breast cancer. In: Proceedings of 23rd IEEE European Modeling & Simulation Symposium, EMSS 2011 (2011)
Yin, B.W., Dnistrian, A., Lloyd, K.O.: Ovarian cancer antigen CA125 is encoded by the MUC16 mucin gene. International Journal of Cancer 98(5), 737–740 (2002)
Yonemori, K., Ando, M., Taro, T.S., Katsumata, N., Matsumoto, K., Yamanaka, Y., Kouno, T., Shimizu, C., Fujiwara, Y.: Tumor-marker analysis and verification of prognostic models in patients with cancer of unknown primary, receiving platinum-based combination chemotherapy. Journal of Cancer Research and Clinical Oncology 132(10), 635–642 (2006)
Zhong, L., Zhou, X., Wei, K., Yang, X., Ma, C., Zhang, C., Zhang, Z.: Application of serum tumor markers and support vector machine in the diagnosis of oral squamous cell carcinoma. Shanghai Kou Qiang Yi Xue (Shanghai Journal of Stomatology) 17(5), 457–460 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Winkler, S.M. et al. (2014). On the Identification of Virtual Tumor Markers and Tumor Diagnosis Predictors Using Evolutionary Algorithms. In: Klempous, R., Nikodem, J., Jacak, W., Chaczko, Z. (eds) Advanced Methods and Applications in Computational Intelligence. Topics in Intelligent Engineering and Informatics, vol 6. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-01436-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-01436-4_6
Publisher Name: Springer, Heidelberg
Print ISBN: 978-3-319-01435-7
Online ISBN: 978-3-319-01436-4
eBook Packages: EngineeringEngineering (R0)