Skip to main content

Methodology of Lithium Analytical Chemistry and Isotopic Measurements

  • Chapter
  • First Online:
Advances in Lithium Isotope Geochemistry

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

At the time of the 19th century discovery and isolation of lithium, the future applications to various fields of human activities and far-reaching importance in several specific areas of industry were unimaginable. A long time had to elapse before the first inklings of utility in geoscience came about in the 1960s. At that stage, a plethora of chemical and instrumental methods to measure the abundances of two naturally occurring isotopes of Li to the highest possible degree of accuracy and precision began to be developed. This chapter synthesizes the pitfalls and success of these endeavours, with particular focus on the Earth and planetary sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed S, Jabeen N, ur Rehman E (2002) Determination of lithium isotopic composition by thermal ionization mass spectrometry. Anal Chem 74:4133–4135

    Article  Google Scholar 

  • Aston FW (1932) The isotopic constitution and atomic weights of caesium, strontium, lithium, rubidium, barium, scandium and thallium. Proc R Soc Lond A 134:571–578

    Article  Google Scholar 

  • Audétat A, Garbe-Schönberg D, Kronz A, Pettke T, Rusk B, Donovan JJ, Lowers HA (2015) Characterisation of a natural quartz crystal as a reference material for microanalytical determination of Ti, Al, Li, Fe, Mn, Ga and Ge. Geostand Geoanal Res 39:171–184

    Article  Google Scholar 

  • Aulbach S, Rudnick RL (2009) Origins of non-equilibrium lithium isotopic fractionation in xenolithic peridotite minerals: examples from Tanzania. Chem Geol 258:17–27

    Article  Google Scholar 

  • Aulbach S, Rudnick RL, McDonough WF (2008) Li-Sr-Nd isotope signature of the plume and cratonic lithospheric mantle beneath the margin of the rifted Tanzanian craton (Labait). Contrib Mineral Petrol 155:79–92

    Article  Google Scholar 

  • Balsiger H, Geiss J, Groegler N, Wyttenbach A (1968) Distribution and isotopic abundance of lithium in stone meteorites. Earth Planet Sci Lett 5:17–22

    Article  Google Scholar 

  • Barrat JA, Chaussidon M, Bohn M, Gillet P, Göpel C, Lesourd M (2005) Lithium behavior during cooling of a dry basalt: an ion-microprobe study of the lunar meteorite Northwest Africa 479 (NWA 479). Geochim Cosmochim Acta 69:5597–5609

    Article  Google Scholar 

  • Beck P, Barrat JA, Chaussidon M, Gillet P, Bohn M (2004) Li isotopic variations in single pyroxenes from the Northwest Africa 480 shergottite (NWA 480): a record of degassing of Martian magmas? Geochim Cosmochim Acta 68:2925–2933

    Article  Google Scholar 

  • Bell DR, Hervig RL, Buseck PR, Aulbach S (2009) Lithium isotope analysis of olivine by SIMS: calibration of a matrix and application to magmatic phenocrysts. Chem Geol 258:5–16

    Article  Google Scholar 

  • Bickle MJ, Chapman HJ, You C-F (2000) Measurement of lithium isotopic ratios as lithium tetraborate ions. Int J Mass Spectrom 202:273–282

    Article  Google Scholar 

  • Brown HL, Biltz C, Anbar M (1977) A precision isotope ratio mass spectrometer for the analysis of 6Li/7Li. Int J Mass Spectrom Ion Phys 25:167–181

    Article  Google Scholar 

  • Bryant CJ, McCulloch MT, Bennett VC (2003) Impact of matrix effects on the accurate measurement of Li isotope ratios by inductively coupled plasma mass spectrometry (MC-ICP-MS) under “cold” plasma conditions. J Anal Atom Spectrom 18:734–737

    Article  Google Scholar 

  • Bryant CJ, Chappell BW, Bennett VC, McCulloch MT (2004) Lithium isotopic compositions of the New England Batholith: correlations with inferred source rock compositions. Trans R Soc Edinburgh—Earth Sci 95:199–214

    Article  Google Scholar 

  • Caciagli N, Brenan JM, McDonough WF, Phinney D (2011) Mineral-fluid partitioning of lithium and implications for slab-mantle interaction. Chem Geol 280:384–398

    Article  Google Scholar 

  • Carignan J, Vigier N, Millot R (2007) Three secondary reference materials for lithium isotope measurements: Li7-N, Li6-N and LiCl-N solutions. Geostandards Geoanal Res 31:7–12

    Article  Google Scholar 

  • Chan LH (1987) Lithium isotope analysis by thermal ionization mass spectrometry of lithium tetraborate. Anal Chem 59:2662–2665

    Article  Google Scholar 

  • Chan LH, Edmond JM (1988) Variation of lithium isotope composition in the marine environment: a preliminary report. Geochim Cosmochim Acta 52:1711–1717

    Article  Google Scholar 

  • Chan LH, Edmond JM, Thompson G, Gillis K (1992) Lithium isotopic composition of submarine basalts: implication for the lithium cycle in the oceans. Earth Planet Sci Lett 108:151–160

    Article  Google Scholar 

  • Chan LH, Edmond JM, Thompson G (1993) A lithium isotope study of hot springs and metabasalts from mid-ocean ridge hydrothermal systems. J Geophys Res 98:9653–9659

    Article  Google Scholar 

  • Chan LH, Gieskes JM, You C-F, Edmond JM (1994) Lithium isotope geochemistry of sediments and hydrothermal fluids of the Guaymas Basin, Gulf of California. Geochim Cosmochim Acta 58:4443–4454

    Article  Google Scholar 

  • Chan LH, Leeman WP, You C-F (1999) Lithium isotopic composition of Central American Volcanic Arc lavas: implications for modification of subarc mantle by slab-derived fluids. Chem Geol 160:255–280

    Article  Google Scholar 

  • Chan LH, Leeman WP, You C-F (2002) Lithium isotopic composition of Central American Volcanic Arc lavas: implications for modification of subarc mantle by slab-derived fluids: correction. Chem Geol 182:293–300

    Article  Google Scholar 

  • Chao J-H, Tseng C-L (1995) Determination of low-level lithium in environmental water samples by neutron activation. Appl Radiat Isot 46:211–215

    Article  Google Scholar 

  • Chapman JF, Dale LS (1976) The determination of lithium isotope abundances with a dual-beam atomic absorption spectrometer. Anal Chim Acta 87:91–95

    Article  Google Scholar 

  • Chapman JF, Dale LS, Fraser HJ (1980) The atomic absorption spectrometric determination of lithium isotope abundances by direct measurement of the absorbance ratio. Anal Chim Acta 116:427–431

    Article  Google Scholar 

  • Chaussidon M, Robert F (1999) Lithium nucleosynthesis in the Sun inferred from the solar-wind 7Li/6Li ratio. Nature 402:270–273

    Article  Google Scholar 

  • Choi MS, Shin HS, Kil YW (2010) Precise determination of lithium isotopes in seawater using MC-ICP-MS. Microchem J 95:274–278

    Article  Google Scholar 

  • Choi MS, Ryu J-S, Park HY, Lee K-S, Kil Y, Shin HS (2013) Precise determination of the lithium isotope ratio in geological samples using MC-ICP-MS with cool plasma. J Anal Atom Spectrom 28:505–509

    Article  Google Scholar 

  • Coogan LA (2011) Preliminary experimental determination of the partitioning of lithium between plagioclase crystals of different anorthite contents. Lithos 125:711–715

    Article  Google Scholar 

  • Coplen TB, Böhlke JK, De Bièvre P, Ding T, Holden NE, Hopple JA, Krouse HR, Lamberty A, Peiser HS, Révész K, Rieder SE, Rosman KJR, Roth E, Taylor PDP, Vocke RD Jr, Xiao YK (2002) Isotope-abundance variations of selected elements. Pure Appl Chem 74:1987–2017

    Article  Google Scholar 

  • Datta BP, Khodade PS, Parab AR, Goyal AH, Chitambar SA, Jain HC (1992) Thermal ionisation mass spectrometry of Li2BO2 + ions: determination of the isotopic abundance ratio of lithium. Int J Mass Spectrom Ion Proc 116:87–114

    Article  Google Scholar 

  • Decitre S, Deloule E, Reisberg L, James RH, Agrinier P, Mével C (2002) Behavior of Li and its isotopes during serpentinization of oceanic peridotites. Geochem Geophys Geosys 3, paper number. doi:10.1029/2001GC000178

    Google Scholar 

  • Dempster AJ (1921) Positive ray analysis of lithium and magnesium. Phys Rev 18:415–422

    Article  Google Scholar 

  • Eugster O, Bernas R (1971) Li, B, Mg and Ti isotopic abundances and search for trapped solar wind Li in Apollo 11 and Apollo 12 material. Proc Lunar Sci Conf 2:1461–1469

    Google Scholar 

  • Flesch GD, Anderson AR, Svec HJ (1973) A secondary isotopic standard for 6Li/7Li determinations. Int J Mass Spectrom Ion Phys 12:265–272

    Article  Google Scholar 

  • Galy A, Yoffe O, Janney PE, Williams RW, Cloquet C, Alard O, Halicz L, Wadhwa M, Hutcheon ID, Ramon E, Carignan J (2003) Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements. J Anal At Spectrom 18:1352–1356

    Article  Google Scholar 

  • Gradsztajn E, Salome M, Yaniv A, Bernas R (1967) Isotopic analysis of lithium in the Holbrook meteorite and in terrestrial samples with a sputtering ion source mass spectrometer. Earth Planet Sci Lett 3:387–393

    Article  Google Scholar 

  • Green LW, Leppinen JJ, Elliot NL (1988) Isotopic analysis of lithium as thermal dilithium fluoride ions. Anal Chem 60:34–37

    Article  Google Scholar 

  • Grégoire DC, Acheson BM, Taylor RP (1996) Measurement of lithium isotope ratios by inductively coupled plasma mass spectrometry: application to geological materials. J Anal Atom Spectrom 11:765–772

    Article  Google Scholar 

  • Halliday AN, Lee D-C, Christensen JN, Walder AJ, Freedman PA, Jones CE, Hall CM, Yi W, Teagle D (1995) Recent developments in inductively coupled plasma magnetic sector multiple collector mass spectrometry. Int J Mass Spectrom Ion Proc 146/147:21–33

    Article  Google Scholar 

  • Halliday AN, Lee D-C, Christensen JN, Rehkämper M, Yi W, Luo X, Hall CM, Ballentine CJ, Pettke T, Stirling CH (1998) Applications of multiple collector-ICPMS to cosmochemistry, geochemistry and paleoceanography. Geochim Cosmochim Acta 62:919–940

    Article  Google Scholar 

  • Hergenröder R, Veza D, Niemax K (1993) Detection limit and selectivity for lithium isotopes in continuous wave field ionization laser spectroscopy. Spectrochim Acta (B) 48:589–569

    Google Scholar 

  • Heuser A, Eisenhauer A (2008) The calcium isotope composition (δ44/40Ca) of NIST SRM 915b and NIST SRM 1486. Geostand Geoanal Res 32:311–315

    Article  Google Scholar 

  • Hoefs J, Sywall M (1997) Lithium isotope composition of Quaternary and Tertiary biogene carbonates and a global lithium isotope balance. Geochim Cosmochim Acta 61:2679–2690

    Article  Google Scholar 

  • Huang K-F, You C-F, Liu Y-H, Wang R-M, Lin P-Y, Chung C-H (2010) Low-memory, small sample size, accurate and high-precision determinations of lithium isotopic ratios in natural materials by MC-ICP-MS. J Anal Atom Spectrom 25:1019–1024

    Article  Google Scholar 

  • Itoh M, Yamada Y, Kiriyama N, Komura K, Ueno K, Sakanoue M (1993) Neutron activation analysis of low level lithium in water samples. J Radioanal Nucl Chem 172:289–298

    Article  Google Scholar 

  • Jabeen N, ur Rehman E, Ahmed S (2003) Determination of lithium isotopic composition by thermal ionization mass spectrometry in seawater. J Radioanal Nucl Chem 258:427–430

    Article  Google Scholar 

  • James RH, Palmer MR (2000) The lithium isotope composition of international rock standards. Chem Geol 166:319–326

    Article  Google Scholar 

  • Janoušek V, Erban V, Holub FV, Magna T, Bellon H, Mlčoch B, Wiechert U, Rapprich V (2010) Geochemistry and genesis of behind-arc basaltic lavas from eastern Nicaragua. J Volcanol Geotherm Res 192:232–256

    Article  Google Scholar 

  • Jeffcoate AB, Elliott T, Thomas A, Bouman C (2004) Precise, small sample size determinations of lithium isotopic compositions of geological reference materials and modern seawater by MC-ICP-MS. Geostand Geoanal Res 28:161–172

    Article  Google Scholar 

  • Jochum KP, Stoll B, Herwig K, Willbold M, Hofmann AW, Amini M, Aarburg S, Abouchami W, Hellebrand E, Mocek B, Raczek I, Stracke A, Alard O, Bouman C, Becker S, Dücking M, Brätz H, Klemd R, de Bruin D, Canil D, Cornell D, de Hoog CJ, Dalpé C, Danyushevsky L, Eisenhauer A, Gao Y, Snow JE, Groschopf N, Günther D, Latkoczy C, Guillong M, Hauri EH, Höfer HE, Lahaye Y, Horz K, Jacob DE, Kasemann SA, Kent AJR, Ludwig T, Zack T, Mason PRD, Meixner A, Rosner M, Misawa K, Nash BP, Pfänder J, Premo WR, Sun WD, Tiepolo M, Vannucci R, Vennemann T, Wayne D, Woodhead JD (2006) MPI-DING reference glasses for in situ microanalysis: new reference values for element concentrations and isotope ratios. Geochem Geophys Geosys 7, paper number Q02008. doi:10.01029/02005GC001060

  • Kasemann SA, Jeffcoate AB, Elliott T (2005) Lithium isotope composition of basalt glass reference material. Anal Chem 77:5251–5257

    Article  Google Scholar 

  • Kim DW (2001) Chromatographic enrichment of lithium isotopes by hydrous manganese(IV) oxide. Bull Korean Chem Soc 22:503–506

    Google Scholar 

  • Kjellman N, Kristiansson K, Malmqvist L (1985) Selective determination of lithium and boron in minerals by means of an SSNTD-technique. Nucl Instr Methods Phys Res A 235:193–197

    Article  Google Scholar 

  • Knight KB, Savina MR, Davis AM, Pellin MJ, Levine J, Grossman L, Simon S (2007) Application of RIMS to the study of beryllium chronology in early Solar System condensates. Workshop on the chronology of meteorites and the early Solar System, #4088

    Google Scholar 

  • Kobayashi K, Tanaka R, Moriguti T, Shimizu K, Nakamura E (2004) Lithium, boron and lead isotope systematics of glass inclusions in olivines from Hawaiian lavas: evidence for recycled components in the Hawaiian plume. Chem Geol 212:143–161

    Article  Google Scholar 

  • Košler J, Magna T (2014) Developments in clean lab practices. In: McDonough WF (ed) Treatise on geochemistry, vol 15, 2nd edn. Elsevier Ltd., Oxford, pp 111–122

    Chapter  Google Scholar 

  • Košler J, Kučera M, Sylvester P (2001) Precise measurement of Li isotopes in planktonic foraminiferal tests by quadrupole ICPMS. Chem Geol 181:169–179

    Article  Google Scholar 

  • Krankowsky D, Müller O (1967) Isotopic composition and abundance of lithium in meteoritic matter. Geochim Cosmochim Acta 31:1833–1842

    Article  Google Scholar 

  • Kushita K (1986) Atomic absorption spectrometric determination of the isotopic composition of lithium by an ultimate absorbance-ratio technique. Anal Chim Acta 183:225–230

    Article  Google Scholar 

  • le Roux PJ (2010) Lithium isotope analysis of natural and synthetic glass by laser ablation MC-ICP-MS. J Anal Atom Spectrom 25:1033–1038

    Article  Google Scholar 

  • Levine J, Savina MR, Stephan T, Dauphas N, Davis AM, Knight KB, Pellin MJ (2009) Resonance ionization mass spectrometry for precise measurements of isotope ratios. Int J Mass Spectrom 288:36–43

    Article  Google Scholar 

  • Liu X-M, Rudnick RL, Hier-Majumder S, Sirbescu M-LC (2010) Processes controlling lithium isotopic distribution in contact aureoles: a case study of the Florence County pegmatites, Wisconsin. Geochem Geophys Geosys 11, paper number Q08014. doi:10.01029/02010GC003063

  • Magna T, Wiechert UH, Halliday AN (2004) Low-blank separation and isotope ratio measurement of small samples of lithium using multiple-collector ICPMS. Int J Mass Spectrom 239:67–76

    Article  Google Scholar 

  • Magna T, Wiechert U, Halliday AN (2006) New constraints on the lithium isotope compositions of the Moon and terrestrial planets. Earth Planet Sci Lett 243:336–353

    Article  Google Scholar 

  • Magna T, Janoušek V, Kohút M, Oberli F, Wiechert U (2010) Fingerprinting sources of orogenic plutonic rocks from Variscan belt with lithium isotopes and possible link to the subduction-related origin of some A-type granites. Chem Geol 274:94–107

    Article  Google Scholar 

  • Magna T, Novák M, Janoušek V (2013) Lithium isotopes in giant pegmatite bodies—implications for their sources and evolution. In: Geological Association of Canada and Mineralogical Association of Canada annual meeting, Winnipeg, Canada. Abstract volume, p 135

    Google Scholar 

  • Marks MAW, Rudnick RL, McCammon C, Vennemann T, Markl G (2007) Arrested kinetic Li isotope fractionation at the margin of the Ilímaussaq complex, South Greenland: evidence for open-system processes during final cooling of peralkaline igneous rocks. Chem Geol 246:207–230

    Article  Google Scholar 

  • Marks MAW, Rudnick RL, Ludwig T, Marschall H, Zack T, Halama R, McDonough WF, Rost D, Wenzel T, Vicenzi EP, Savov IP, Altherr R, Markl G (2008) Sodic pyroxene and sodic amphibole as potential reference materials for in situ lithium isotope determinations by SIMS. Geostand Geoanal Res 32:295–310

    Article  Google Scholar 

  • Meier AL (1982) Determination of lithium isotopes at natural abundance levels by atomic absorption spectrometry. Anal Chem 54:2158–2162

    Article  Google Scholar 

  • Michiels E, De Bièvre P (1983) Absolute isotopic composition and the atomic weight of a natural sample of lithium. Int J Mass Spectrom Ion Phys 49:265–274

    Article  Google Scholar 

  • Millot R, Guerrot C, Vigier N (2004) Accurate and high-precision measurement of lithium isotopes in two reference materials by MC-ICP-MS. Geostand Geoanal Res 28:153–159

    Article  Google Scholar 

  • Millot R, Petelet-Giraud E, Guerrot C, Négrel P (2010) Multi-isotopic composition (δ7Li–δ11B–δ D–δ18O) of rainwaters in France: Origin and spatio-temporal characterization. Appl Geochem 25:1510–1524

    Google Scholar 

  • Misra S, Froehlich PN (2009) Measurement of lithium isotope ratios by quadrupole-ICP-MS: application to seawater and natural carbonates. J Anal Atom Spectrom 24:1524–1533

    Article  Google Scholar 

  • Moriguti T, Nakamura E (1998) High-yield lithium separation and the precise isotopic analysis for natural rock and aqueous samples. Chem Geol 145:91–104

    Article  Google Scholar 

  • Nishio Y, Nakai S (2002) Accurate and precise lithium isotopic determinations of igneous rock samples using multi-collector inductively coupled plasma mass spectormetry. Anal Chim Acta 456:271–281

    Article  Google Scholar 

  • Négrel P, Millot R, Brenot A, Bertin C (2010) Lithium isotopes as tracers of groundwater circulation in a peat land. Chem Geol 276:119–127

    Google Scholar 

  • Nörtershäuser W, Sánchez R, Ewald G, Dax A, Behr J, Bricault P, Bushaw BA, Dilling J, Dombsky M, Drake WF, Götte S, Kluge H-J, Kühl T, Lassen J, Levy CDP, Pachucki K, Pearson M, Puchalski M, Wojtaszek A, Yan Z-C, Zimmermann C (2011) Isotope-shift measurements of stable and short-lived lithium isotopes for nuclear-charge-radii determination. Phys Rev A 83, paper number 012516

    Google Scholar 

  • Oi T, Odagiri T, Nomura M (1997) Extraction of lithium from GSJ rock reference samples and determination of their isotopic compositions. Anal Chim Acta 340:221–225

    Article  Google Scholar 

  • Penniston-Dorland SC, Sorensen SS, Ash RD, Khadke SV (2010) Lithium isotopes as a tracer of fluids in a subduction zone mélange: Franciscan Complex, CA. Earth Planet Sci Lett 292:181–190

    Article  Google Scholar 

  • Poschenrieder WP, Herzog RF, Barrington AE (1965) The relative abundance of the lithium isotopes in the Holbrook meteorite. Geochim Cosmochim Acta 29:1193–1195

    Article  Google Scholar 

  • Qi HP, Coplen TB, Wang QZ, Wang YH (1997a) Unnatural isotopic composition of lithium reagents. Anal Chem 69:4076–4078

    Article  Google Scholar 

  • Qi HP, Taylor PDP, Berglund M, De Bièvre P (1997b) Calibrated measurements of the isotopic composition and atomic weight of the natural Li isotopic reference material IRMM-016. Int J Mass Spectrom Ion Proc 171:263–268

    Article  Google Scholar 

  • Räisänen J (1992) Analysis of lithium by ion beam methods. Nucl Instr Methods Phys Res B 66:107–117

    Article  Google Scholar 

  • Rajan RS, Brown L, Tera F, Whitford DJ (1980) Lithium isotopic composition in some stone meteorites. Earth Planet Sci Lett 51:41–44

    Article  Google Scholar 

  • Reynolds BC, Georg RB, Oberli F, Wiechert U, Halliday AN (2006) Re-assessment of silicon isotope reference materials using high-resolution multi-collector ICP-MS. J Anal At Spectrom 21:266–269

    Article  Google Scholar 

  • Richter FM, Davis AM, DePaolo DJ, Watson EB (2003) Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim Cosmochim Acta 67:3905–3923

    Article  Google Scholar 

  • Rosner M, Ball L, Peucker-Ehrenbrink B, Bluzstajn J, Bach W, Erzinger J (2007) A simplified, accurate and fast method for lithium isotope analysis of rocks and fluids, and δ7Li values of seawater and rock reference materials. Geostandards Geoanal Res 31:77–88

    Article  Google Scholar 

  • Sahoo SK, Masuda A (1995a) High precision isotopic measurement of lithium by thermal ionization mass spectrometry. Int J Mass Spectrom Ion Proc 151:189–196

    Article  Google Scholar 

  • Sahoo SK, Masuda A (1995b) Simultaneous measurement of lithium and boron isotopes as lithium tetraborate ion by thermal ionization mass spectrometry. Analyst 120:335–339

    Article  Google Scholar 

  • Sahoo SK, Masuda A (1998) Precise determination of lithium isotopic composition by thermal ionization mass spectrometry in natural samples such as seawater. Anal Chim Acta 370:215–220

    Article  Google Scholar 

  • Seitz H-M, Brey GP, Lahaye Y, Durali S, Weyer S (2004) Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes. Chem Geol 212:163–177

    Article  Google Scholar 

  • Seitz H-M, Brey GP, Zipfel J, Ott U, Weyer S, Durali S, Weinbruch S (2007) Lithium isotope composition of ordinary and carbonaceous chondrites, and differentiated planetary bodies: bulk solar system and solar reservoirs. Earth Planet Sci Lett 260:582–596

    Article  Google Scholar 

  • Schauble EA (2004) Applying stable isotope fractionation theory to new systems. In: Johnson CM, Beard BL, Albarède F (eds) Geochemistry of non-traditional stable isotopes. Rev Mineral Geochem 55:65–111

    Google Scholar 

  • Schönbächler M, Fehr MA (2014) Basics of ion exchange chromatography for selected geological applications. In: McDonough WF (ed vol 15) Treatise on geochemistry, 2nd edn. Elsevier Ltd., Oxford, pp 123–146

    Chapter  Google Scholar 

  • Simons KK, Harlow GE, Brueckner HK, Goldstein SL, Sorensen SS, Hemming NG, Langmuir CH (2010) Lithium isotopes in Guatemalan and Franciscan HP–LT rocks: insights into the role of sediment-derived fluids during subduction. Geochim Cosmochim Acta 74:3621–3641

    Article  Google Scholar 

  • Smith BW, Gornuskhin IB, King LA, Winefordner JD (1998) A laser ablation-atomic fluorescence technique for isotopically selective determination of lithium in solids. Spectrochim Acta (B) 53:1131–1138

    Article  Google Scholar 

  • Strelow FWE, Weinert CHSW, van der Walt TN (1974) Separation of lithium from sodium, beryllium and other elements by cation-exchange chromatography in nitric acid-methanol. Anal Chim Acta 71:123–132

    Article  Google Scholar 

  • Sun XF, Ting BTG, Zeisel SH, Janghorbani M (1987) Accurate measurement of stable isotopes of lithium by inductively coupled plasma mass spectrometry. Analyst 112:1223–1228

    Article  Google Scholar 

  • Suryanarayana MV, Sankari M, Gangadharan S (1998) Determination of 6Li/7Li isotope ratio using two photon resonance three photon resonance ionization mass spectrometry. Int J Mass Spectrom Ion Proc 173:177–189

    Article  Google Scholar 

  • Svec HJ, Anderson AR (1965) The absolute abundance of the lithium isotopes in natural sources. Geochim Cosmochim Acta 29:633–641

    Article  Google Scholar 

  • Svec HJ, Anderson AR (1966) A mass spectrometer for the precise assay of the lithium isotopes. J Sci Instrum 43:134–137

    Article  Google Scholar 

  • Su B-X, Gu X-Y, Deloule E, Zhang H-F, Li Q-L, Li X-H, Vigier N, Tang Y-J, Tang G-Q, Liu Y, Pang K-N, Brewer A, Mao Q, Ma Y-G (2015) Potential orthopyroxene, clinopyroxene and olivine reference materials for in situ lithium isotope determination. Geostand Geoanal Res 39:357–369

    Article  Google Scholar 

  • Šulcek Z, Rubeška J (1969) Bestimmung des Lithiumspurengehaltes in Gesteinen. Collect Czechoslovak Chem Commun 34:2048–2056

    Article  Google Scholar 

  • Šulcek Z, Povondra P, Štangl R (1965) Chromatographische Trennung der Lithium- und Natriumionen. Collect Czechoslovak Chem Commun 30:380–387

    Article  Google Scholar 

  • Taylor TI, Urey HC (1938) Fractionation of the lithium and potassium isotopes by chemical exchange with zeolithes. J Chem Phys 6:429–438

    Article  Google Scholar 

  • Teng F-Z, McDonough WF, Rudnick RL, Dalpé C, Tomascak PB, Chappell BW, Gao S (2004) Lithium isotopic composition and concentration of the upper continental crust. Geochim Cosmochim Acta 68:4167–4178

    Article  Google Scholar 

  • Teng F-Z, McDonough WF, Rudnick RL, Walker RJ (2006) Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite. Earth Planet Sci Lett 243:701–710

    Article  Google Scholar 

  • Teng F-Z, Rudnick RL, McDonough WF, Gao S, Tomascak PB, Liu Y (2008) Lithium isotopic composition and concentration of the deep continental crust. Chem Geol 255:47–59

    Article  Google Scholar 

  • Teng F-Z, Rudnick RL, McDonough WF, Wu F-Y (2009) Lithium isotopic systematics of A-type granites and their mafic enclaves: further constraints on the Li isotopic composition of the continental crust. Chem Geol 262:370–379

    Article  Google Scholar 

  • Tomascak PB (2004) Developments in the understanding and application of lithium isotopes in the Earth and planetary sciences. In: Johnson CM, Beard BL, Albarède F (eds) Geochemistry of non-traditional stable isotopes. Rev Mineral Geochem 55:153–195

    Google Scholar 

  • Tomascak PB, Carlson RW, Shirey SB (1999) Accurate and precise determination of Li isotopic compositions by multi-collector sector ICP-MS. Chem Geol 158:145–154

    Article  Google Scholar 

  • Trompetter WJ, Reyes AG, Vickridge IC, Markwitz A (1999) Lithium and boron distributions in geological samples. Nucl Instr Methods Phys Res B 158:568–574

    Article  Google Scholar 

  • ur Rehman E, ur Rehman S, Ahmed S (2009) 6Li atom percentage determination by atomic absorption-emission spectrometry using a natural lithium hollow cathode lamp. Appl Spectrosc 63:971–973

    Article  Google Scholar 

  • Vanhoe H, Vandecasteele C, Versieck J, Dams R (1991) Determination of lithium in biological samples by inductively coupled plasma mass spectrometry. Anal Chim Acta 244:259–267

    Article  Google Scholar 

  • Wheat JA (1971) Isotopic analysis of lithium by atomic absorption spectrophotometry. Appl Spectrosc 25:328–330

    Article  Google Scholar 

  • Wiernik M, Amiel S (1970) Determination of lithium and its isotopic composition by activation analysis and measurement of 8Li and 17N. J Radioanal Chem 5:123–131

    Article  Google Scholar 

  • Wieser ME (2006) Atomic weights of the elements 2005 (IUPAC technical report). Pure Appl Chem 78:2051–2066

    Article  Google Scholar 

  • Wizemann HD, Niemax K (2000) Measurement of 7Li/6Li isotope ratios by resonant Doppler-free two-photon diode laser atomic absorption spectroscopy in a low-pressure graphite furnace. Spectrochim Acta (B) 55:637–650

    Article  Google Scholar 

  • Wölfle R, Neubert A (1977) Determination of isotopic composition of lithium by neutron activation analysis; comparison with mass spectrometry. J Radioanal Chem 39:375–384

    Article  Google Scholar 

  • Xu R, Liu Y, Tong X, Hu Z, Zong K, Gao S (2013) In-situ trace elements and Li and Sr isotopes in peridotite xenoliths from Kuandian, North China Craton: Insights into Pacific slab subduction-related mantle modification. Chem Geol 354:107–123

    Google Scholar 

  • Xiao YK, Beary ES (1989) High-precision isotopic measurement of lithium by thermal ionization mass spectrometry. Int J Mass Spectrom Ion Proc 94:101–114

    Article  Google Scholar 

  • You C-F, Chan LH (1996) Precise determination of lithium isotopic composition in low concentration natural samples. Geochim Cosmochim Acta 60:909–915

    Article  Google Scholar 

  • You C-F, Chan LH, Spivack AJ, Gieskes JM (1995) Lithium, boron and their isotopes in sediments and pore waters of Ocean Drilling Program Site 808, Nankai trough: implications for fluid expulsion in accretionary prisms. Geology 23:37–40

    Article  Google Scholar 

  • Zack T, Tomascak PB, Rudnick RL, Dalpé C, McDonough WF (2003) Extremely light Li in orogenic eclogites: the role of isotope fractionation during dehydration in subducted oceanic crust. Earth Planet Sci Lett 208:279–290

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul B. Tomascak .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tomascak, P.B., Magna, T., Dohmen, R. (2016). Methodology of Lithium Analytical Chemistry and Isotopic Measurements. In: Advances in Lithium Isotope Geochemistry. Advances in Isotope Geochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-01430-2_2

Download citation

Publish with us

Policies and ethics