Skip to main content

Symmetries in Multiband Hamiltonians for Semiconductor Quantum Dots

  • Chapter
  • First Online:
  • 1441 Accesses

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 94))

Abstract

Our current understanding of the symmetries of multiband envelope function Hamiltonians for semiconductor quantum dots and their signatures in the energy level structure and wave function shapes is reviewed. We show how symmetry can be used to block-diagonalize the Hamiltonian matrix and consequently strongly reduce the computational effort. A detailed analysis of symmetries of several different model Hamiltonians reveals that the true symmetry of square-based pyramidal quantum dots is captured if either the interface effects are taken into account or additional higher energy bands are included in the multiband Hamiltonian. This indicates that multiband envelope function methods are fully capable of capturing the true atomistic symmetry of quantum dots in contrast to some widespread beliefs. In addition, we show that translational symmetry can be artificially introduced by the numerical method used, such as the plane wave method. Plane wave method introduces artificial quantum dot replica whose charges interact with charges in the real quantum dot and create an additional strain field in the real dot. This issue can be circumvented by the introduction of proper corrections in the procedure for calculation of Coulomb integrals and strain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. N. Akopian, N.H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B.D. Gerardot, P.M. Petroff, Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96, 130–501 (2006)

    Article  Google Scholar 

  2. A.P. Alivisatos, W.W. Gu, C. Larabell, Quantum dots as cellular probes. Ann. Rev. Biomed. Eng. 7, 55–76 (2005)

    Article  Google Scholar 

  3. A.D. Andreev, Conference on In-Plane Semiconductor Lasers - From Ultraviolet to Mid-Infrared II, San Jose, CA, Jan 26–28, 1998, pp 151–161

    Google Scholar 

  4. A.D. Andreev, J.R. Downes, D.A. Faux, E.P. O’Reilly, Strain distributions in quantum dots of arbitrary shape. J. Appl. Phys. 86, 297–305 (1999)

    Article  Google Scholar 

  5. A.D. Andreev, E.P. O’Reilly, Theory of the electronic structure of GaN/AlN hexagonal quantum dots. Phys. Rev. B 62, 15,851–15,870 (2000)

    Article  Google Scholar 

  6. C.G. Bailey, D.V. Forbes, R.P. Raffaelle, S.M. Hubbard, Near 1 v open circuit voltage InAs/GaAs quantum dot solar cells. Appl. Phys. Lett. 98(16), 163105 (2011)

    Google Scholar 

  7. G.A. Baraff, D. Gershoni, Eigenfunction-expansion method for solving the quantum-wire problem: Formulation. Phys. Rev. B 43, 4011–4022 (1991)

    Article  Google Scholar 

  8. P. Bhattacharya, S. Ghosh, A.D. Stiff-Roberts, Quantum dot opto-electronic devices. Ann. Rev. Mat. Res. 34, 1–40 (2004)

    Article  Google Scholar 

  9. D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum dot heterostructures (John Wiley, Chichester, 1999)

    Google Scholar 

  10. G.L. Bir, G.E. Pikus, Symmetry and strain-induced effects in semiconductors (Wiley, New York, 1974)

    Google Scholar 

  11. S. Blokhin, A. Sakharov, A. Nadtochy, A. Pauysov, M. Maximov, N. Ledentsov, A. Kovsh, S. Mikhrin, V. Lantratov, S. Mintairov, N. Kaluzhniy, M. Shvarts, AlGaAs/GaAs photovoltaic cells with an array of InGaAs qds. Semiconductors 43, 514–518 (2009)

    Article  Google Scholar 

  12. C. Bulutay, Pseudopotential-based full zone k ⋅ p technique for indirect bandgap semiconductors: Si, Ge, diamond and Sic. Turk. J. Phys. 30, 287–294 (2006)

    Google Scholar 

  13. M.G. Burt, The justification for applying the effective-mass approximation to microstructures. J. Phys.: Condens. Matter 4, 6651–6690 (1992)

    Google Scholar 

  14. M. Cardona, N.E. Christensen, G. Fasol, Relativistic band structure and spin-orbit splitting of zinc-blende-type semiconductors. Phys. Rev. B 38(3), 1806–1827 (1988)

    Article  Google Scholar 

  15. M. Cardona, F.H. Pollak, Energy-band structure of germanium and silicon: The k ⋅ p method. Phys. Rev. 142(2), 530–543 (1966)

    Article  Google Scholar 

  16. M.A. Cusack, P.R. Briddon, M. Jaros, Electronic structure of InAs/GaAs self-assembled quantum dots. Phys. Rev. B 54, R2300–R2303 (1996)

    Article  Google Scholar 

  17. J.P. Cuypers, W. van Haeringen, Coupling between γ- and x-type envelope functions at GaAs/Al(Ga)As interfaces. Phys. Rev. B 48(15), 11,469–11,472 (1993)

    Article  Google Scholar 

  18. K. Eichkorn, R. Ahlrichs, Cadmium selenide semiconductor nanocrystals: a theoretical study. Chem. Phys. Lett. 288, 235–242 (1998)

    Article  Google Scholar 

  19. J.P. Elliott, P.G. Dawber, Symmetry in Physics (Macmillan, London, 1979)

    Google Scholar 

  20. J. Even, F. Doré, C. Cornet, L. Pedesseau, Semianalytical model for simulation of electronic properties of narrow-gap strained semiconductor quantum nanostructures. Phys. Rev. B 77, 085305 (2008)

    Article  Google Scholar 

  21. B.A. Foreman, Analytical envelope-function theory of interface band mixing. Phys. Rev. Lett. 81(2), 425–428 (1998)

    Article  Google Scholar 

  22. B.A. Foreman, Analytical envelope-function theory of interface band mixing. Phys. Rev. Lett. 81, 425–428 (1998)

    Article  Google Scholar 

  23. N. Fraj, I. Saïdi, S.B. Radhia, K. Boujdaria, Band structures of AlAs, gap, and SiGe alloys: A 30 k ⋅ p model. J. Appl. Phys. 102(5), 053703 (2007)

    Google Scholar 

  24. A. Franceschetti, H. Fu, L.W. Wang, A. Zunger, Many-body pseudopotential theory of excitons in inp and cdse quantum dots. Phys. Rev. B 60, 1819–1829 (1999)

    Article  Google Scholar 

  25. C.S. Garoufalis, A.D. Zdetsis, S. Grimme, High level ab initio calculations of the optical gap of small silicon quantum dots. Phys. Rev. Lett. 87, 276,402 (2001)

    Article  Google Scholar 

  26. D. Gershoni, C.H. Henry, G.A. Baraff, Calculating the optical properties of multidimensional heterostructures: Application to the modeling of quaternary quantum well lasers. IEEE J. Quantum Electron. 29, 2433–2450 (1993)

    Article  Google Scholar 

  27. C. Hermann, C. Weisbuch, k ⋅ p perturbation theory in iii-v compounds and alloys: a reexamination. Phys. Rev. B 15(2), 823–833 (1977)

    Google Scholar 

  28. S.M. Hubbard, C.D. Cress, C.G. Bailey, R.P. Raffaelle, S.G. Bailey, D.M. Wilt, Effect of strain compensation on quantum dot enhanced GaAs solar cells. Appl. Phys. Lett. 92(12), 123512 (2008)

    Google Scholar 

  29. H. Jiang, J. Singh, Strain distribution and electronic spectra of InAs/GaAs self-assembled dots: An eight-band study. Phys. Rev. B 56, 4696–4701 (1997)

    Article  Google Scholar 

  30. J. Kim, L.W. Wang, A. Zunger, Comparison of the electronic structure of InAs/GaAs pyramidal quantum dots with different facet orientations. Phys. Rev. B 57(16), R9408–R9411 (1998)

    Article  Google Scholar 

  31. N. Kirstaedter, N.N. Ledentsov, M. Grundmann, D. Bimberg, V.M. Ustinov, S.S. Ruvimov, M.V. Maximov, P.S. Kopev, Z.I. Alferov, U. Richter, P. Werner, U. Gosele, J. Heydenreich, Low-threshold, large T 0 injection-laser emission from (InGa)As quantum dots. Electron. Lett. 30, 1416–1417 (1994)

    Article  Google Scholar 

  32. P.C. Klipstein, Operator ordering and interface-band mixing in the Kane-like Hamiltonian of lattice-matched semiconductor superlattices with abrupt interfaces. Phys. Rev. B 81(23), 235–314 (2010)

    Article  Google Scholar 

  33. M.E. Kurdi, G. Fishman, S. Sauvage, P. Boucaud, Band structure and optical gain of tensile-strained germanium based on a 30 band k ⋅ p formalism. J. Appl. Phys. 107(1), 013710 (2010)

    Google Scholar 

  34. O.L. Lazarenkova, A.A. Balandin, Miniband formation in a quantum dot crystal. J. Appl. Phys. 89(10), 5509–5515 (2001)

    Article  Google Scholar 

  35. S. Lee, J. Kim, L. Jönsson, J.W. Wilkins, G.W. Bryant, G. Klimeck, Many-body levels of optically excited and multiply charged InAs nanocrystals modeled by semiempirical tight binding. Phys. Rev. B 66, 235,307 (2002)

    Article  Google Scholar 

  36. J. Li, L.W. Wang, Energy levels of isoelectronic impurities by large scale LDA calculations. Phys. Rev. B 67, 033,102 (2003)

    Article  Google Scholar 

  37. J. Li, L.W. Wang, First principles calculations of ZnS:Te energy levels. Phys. Rev. B 67, 205,319 (2003)

    Article  Google Scholar 

  38. J. Li, L.W. Wang, Band-structure-corrected local density approximation study of semiconductor quantum dots and wires. Phys. Rev. B 72, 125325 (2005)

    Article  Google Scholar 

  39. S.S. Li, J.B. Xia, Z.L. Yuan, Z.Y. Xu, W. Ge, X.R. Wang, Y. Wang, J. Wang, L.L. Chang, Effective-mass theory for InAs/GaAs strained coupled quantum dots. Phys. Rev. B 54, 11,575–11,581 (1996)

    Article  Google Scholar 

  40. J.M. Luttinger, Quantum theory of cyclotron resonance in semiconductors: general theory. Phys. Rev. 102, 1030–1041 (1956)

    Article  MATH  Google Scholar 

  41. J.M. Luttinger, W. Kohn, Motion of electrons and holes in perturbed periodic fields. Phys. Rev. 97, 869–883 (1955)

    Article  MATH  Google Scholar 

  42. S. Maimon, E. Finkman, G. Bahir, S.E. Schacham, J.M. Garcia, P.M. Petroff, Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectors. Appl. Phys. Lett. 73, 2003–2005 (1998)

    Article  Google Scholar 

  43. G. Makov, M.C. Payne, Periodic boundary conditions in ab initio calculations. Phys. Rev. B 51, 4014–4022 (1995)

    Article  Google Scholar 

  44. H. Mayer, U. Rössler, Spin splitting and anisotropy of cyclotron resonance in the conduction band of GaAs. Phys. Rev. B 44(16), 9048–9051 (1991)

    Article  Google Scholar 

  45. P. Michler, A. Kiraz, C. Becher, W.V. Schoenfeld, P.M. Petroff, L.D. Zhang, E. Hu, A. Imamoglu, A quantum dot single-photon turnstile device. Science 290, 2282 (2000)

    Article  Google Scholar 

  46. V. Mlinar, M. Tadić, F.M. Peeters, Hole and exciton energy levels in InP/In x Ga1−x P quantum dot molecules: Influence of geometry and magnetic field dependence. Phys. Rev. B 73, 235,336 (2006)

    Article  Google Scholar 

  47. T. Nakaoka, T. Saito, J. Tatebayashi, Y. Arakawa, Size, shape and strain dependence of the g factor in self-assembled In(Ga)As quantum dots. Phys. Rev. B 70, 235,337 (2004)

    Article  Google Scholar 

  48. A. Nozik, Quantum dot solar cells. Physica E 14(1-2), 115–120 (2002)

    Article  Google Scholar 

  49. R. Oshima, A. Takata, Y. Okada, Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells. Appl. Phys. Lett. 93(8), 083111 (2008)

    Google Scholar 

  50. D. Pan, E. Towe, S. Kennerly, Normal-incidence intersubband (In,Ga)As/GaAs quantum dot infrared photodetectors. Appl. Phys. Lett. 73, 1937–1939 (1998)

    Article  Google Scholar 

  51. D. Pan, Y.P. Zeng, M.Y. Kong, J. Wu, Y.Q. Zhu, C.H. Zhang, J.M. Li, C.Y. Wang, Normal incident infrared absorption from InGaAs/GaAs quantum dot superlattice. Electron. Lett. 32, 1726–1727 (1996)

    Article  Google Scholar 

  52. P.M. Petroff, S.P. DenBaars, MBE and MOCVD growth and Properties of Self-Assembling Quantum Dot Arrays in III-V Semiconductor Structures. Superlattices and Microstructures 15, 15–21 (1994)

    Article  Google Scholar 

  53. P. Pfeffer, W. Zawadzki, Conduction electrons in GaAs: Five-level k ⋅ p theory and polaron effects. Phys. Rev. B 41(3), 1561–1576 (1990)

    Article  Google Scholar 

  54. P. Pfeffer, W. Zawadzki, Five-level k ⋅ p model for the conduction and valence bands of gaas and inp. Phys. Rev. B 53(19), 12,813–12,828 (1996)

    Article  Google Scholar 

  55. C.R. Pidgeon, R.N. Brown, Interband magneto-absorption and Faraday rotation in InSb. Phys. Rev. 146, 575–583 (1966)

    Article  Google Scholar 

  56. C. Pryor, Eight-band calculations of strained InAs/GaAs quantum dots compared with one-, four-, and six-band approximations. Phys. Rev. B 57, 7190–7195 (1998)

    Article  Google Scholar 

  57. C. Pryor, J. Kim, L.W. Wang, A.J. Williamson, A. Zunger, Comparison of two methods for describing the strain profiles in quantum dots. J. Appl. Phys. 83, 2548–2554 (1998)

    Article  Google Scholar 

  58. A. Puzder, A.J. Williamson, J.C. Grossman, G. Galli, Computational studies of the optical emission of silicon nanocrystals. J. Am. Chem. Soc. 125, 2786–2791 (2003)

    Article  Google Scholar 

  59. S.B. Radhia, K. Boujdaria, S. Ridene, H. Bouchriha, G. Fishman, Band structures of GaAs, InAs, and Ge: A 24-k ⋅ p model. J. Appl. Phys. 94(9), 5726–5731 (2003)

    Article  Google Scholar 

  60. S.B. Radhia, S. Ridene, K. Boujdaria, H. Bouchriha, G. Fishman, Band structures of Ge and InAs: A 20 k ⋅ p model. J. Appl. Phys. 92(8), 4422–4430 (2002)

    Article  Google Scholar 

  61. J.P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L.V. Keldysh, V.D. Kulakovskii, T.L. Reinecke, A. Forchel, Strong coupling in a single quantum dot-semiconductor microcavity. Nature (London) 432, 197–200 (2004)

    Article  Google Scholar 

  62. S. Richard, F. Aniel, G. Fishman, Energy-band structure of Ge, Si, and GaAs: A thirty-band k ⋅ p method. Phys. Rev. B 70(23), 235,204 (2004)

    Google Scholar 

  63. D. Rideau, M. Feraille, L. Ciampolini, M. Minondo, C. Tavernier, H. Jaouen, A. Ghetti, Strained Si, Ge, and Si1−x Ge x alloys modeled with a first-principles-optimized full-zone k ⋅ p method. Phys. Rev. B 74(19), 195–208 (2006)

    Article  Google Scholar 

  64. U. Rössler, Nonparabolicity and warping in the conduction band of GaAs. Solid State Commun. 49(10), 943–947 (1984)

    Article  Google Scholar 

  65. U. Rössler, J. Kainz, Microscopic interface asymmetry and spin-splitting of electron subbands in semiconductor quantum structures. Solid State Commun. 121(6-7), 313–316 (2002)

    Article  Google Scholar 

  66. M. Roy, P.A. Maksym, Efficient method for calculating electronic states in self-assembled quantum dots. Phys. Rev. B 68, 235,308 (2003)

    Article  Google Scholar 

  67. K.A. Sablon, J.W. Little, V. Mitin, A. Sergeev, N. Vagidov, K. Reinhardt, Strong enhancement of solar cell efficiency due to quantum dots with built-in charge. Nano Letters 11(6), 2311–2317 (2011)

    Article  Google Scholar 

  68. I. Saïdi, S.B. Radhia, K. Boujdaria, Band structures of gaas, inas, and inp: A 34 k ⋅ p model. J. Appl. Phys. 104(2), 023706 (2008)

    Google Scholar 

  69. Saito, T., Schulman, J.N., Arakawa, Y.: Strain-energy distribution and electronic structure of InAs pyramidal quantum dots with uncovered surfaces: Tight-binding analysis. Phys. Rev. B 57, 13,016–13,019 (1998)

    Google Scholar 

  70. R. Santoprete, B. Koiller, R.B. Capaz, P. Kratzer, Q.K.K. Liu, M. Scheffler, Tight-binding study of the influence of the strain on the electronic properties of InAs/GaAs quantum dots. Phys. Rev. B 68, 235,311 (2003)

    Article  Google Scholar 

  71. C. Santori, M. Pelton, G.S. Solomon, Y. Dale, Y. Yamamoto, Triggered single photons from a quantum dot. Phys. Rev. Lett. 86, 1502–1505 (2001)

    Article  Google Scholar 

  72. R.D. Schaller, V.I. Klimov, High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion. Phys. Rev. Lett. 92, 186,601 (2004)

    Article  Google Scholar 

  73. W. Sheng, S.J. Cheng, P. Hawrylak, Multiband theory of multi-exciton complexes in self-assembled quantum dots. Phys. Rev. B 71, 035,316 (2005)

    Article  Google Scholar 

  74. R.M. Stevenson, R.J. Young, P. Atkinson, K. Cooper, D.A. Ritchie, A.J. Shields, A semiconductor source of triggered entangled photon pairs. Nature (London) 439, 179–182 (2006)

    Article  Google Scholar 

  75. O. Stier, Electronic and optical properties of quantum dots and wires. Wissenschaft & Technik Verlag, Berlin (2000)

    Google Scholar 

  76. O. Stier, M. Grundmann, D. Bimberg, Electronic and optical properties of strained quantum dots modeled by 8-band k ⋅ p theory. Phys. Rev. B 59, 5688–5701 (1999)

    Article  Google Scholar 

  77. M. Tadić, F.M. Peeters, K.L. Janssens, Effect of isotropic versus anisotropic elasticity on the electronic structure of cylindrical InP/In0. 49Ga0. 51P self-assembled quantum dots. Phys. Rev. B 65, 165,333 (2002)

    Google Scholar 

  78. M. Tadić, F.M. Peeters, K.L. Janssens, M. Korkusiński, P. Hawrylak, Strain and band edges in single and coupled cylindrical InAs/GaAs and InP/InGaP self-assembled quantum dots. J. Appl. Phys. 92, 5819–5829 (2002)

    Article  Google Scholar 

  79. S. Tomić, Electronic structure of In y Ga1−y As1−x N x /GaAs(N) quantum dots by ten-band k ⋅ p theory. Phys. Rev. B 73, 125,348 (2006)

    Article  Google Scholar 

  80. S. Tomić, T.S. Jones, N.M. Harrison, Absorption characteristics of a quantum dot array induced intermediate band: Implications for solar cell design. Appl. Phys. Lett. 93(26), 263105 (2008)

    Google Scholar 

  81. S. Tomić, A.G. Sunderland, I.J. Bush, Parallel multi-band k ⋅ p code for electronic structure of zinc blend semiconductor quantum dots. J. Mater. Chem. 16, 1963–1972 (2006)

    Article  Google Scholar 

  82. S. Tomić, Intermediate-band solar cells: Influence of band formation on dynamical processes in InAs/GaAs quantum dot arrays. Phys. Rev. B 82, 195,321 (2010)

    Article  Google Scholar 

  83. S. Tomić, N. Vukmirović, Symmetry reduction in multiband Hamiltonians for semiconductor quantum dots: The role of interfaces and higher energy bands. J. Appl. Phys. 110(5), 053710 (2011)

    Google Scholar 

  84. P. Tronc, V.P. Smirnov, K.S. Zhuravlev, Symmetry of electron states and optical transitions in GaN/AlN hexagonal quantum dots. Phys. Status Solidi B 241, 2938–2947 (2004)

    Article  Google Scholar 

  85. I. Vasiliev, S. Öğüt, J.R. Chelikowsky, First-principles density-functional calculations for optical spectra of clusters and nanocrystals. Phys. Rev. B 65(11), 115,416 (2002)

    Google Scholar 

  86. P. von Allmen, Conduction subbands in a GaAs/Al x Ga1−x As quantum well: Comparing different k ⋅ p models. Phys. Rev. B 46(23), 15,382–15,386 (1992)

    Article  Google Scholar 

  87. N. Vukmirović, Z. Ikonić, D. Indjin, P. Harrison, Symmetry-based calculation of single-particle states and intraband absorption in hexagonal GaN/AlN quantum dot superlattices. J. Phys.: Condens. Matter 18, 6249–6262 (2006)

    Google Scholar 

  88. N. Vukmirović, D. Indjin, V.D. Jovanović, Z. Ikonić, P. Harrison, Symmetry of k ⋅ p Hamiltonian in pyramidal InAs/GaAs quantum dots: Application to the calculation of electronic structure. Phys. Rev. B 72, 075,356 (2005)

    Article  Google Scholar 

  89. N. Vukmirović, S. Tomić, Plane wave methodology for single quantum dot electronic structure calculations. J. Appl. Phys. 103, 103718 (2008)

    Article  Google Scholar 

  90. L.W. Wang, Large-scale local-density-approximation band gap-corrected GaAsN calculations. Appl. Phys. Lett. 78, 1565–1567 (2001)

    Article  Google Scholar 

  91. L.W. Wang, Charge-density patching method for unconventional semiconductor binary systems. Phys. Rev. Lett. 88(25), 256,402 (2002)

    Google Scholar 

  92. L.W. Wang, Generating charge densities of fullerenes. Phys. Rev. B 65, 153,410 (2002)

    Article  Google Scholar 

  93. L.W. Wang, J. Kim, A. Zunger, Electronic structures of [110]-faceted self-assembled pyramidal InAs/GaAs quantum dots. Phys. Rev. B 59(8), 5678–5687 (1999)

    Article  Google Scholar 

  94. L.W. Wang, A. Zunger, Linear combination of bulk bands method for large-scale electronic structure calculations on strained nanostructures. Phys. Rev. B 59, 15,806–15,818 (1999)

    Article  Google Scholar 

  95. A.J. Williamson, A. Zunger, InAs quantum dots: Predicted electronic structure of free-standing versus GaAs-embedded structures. Phys. Rev. B 59(24), 15,819–15,824 (1999)

    Article  Google Scholar 

  96. J.B. Xia, γ-x mixing effect in GaAs/AlAs superlattices and heterojunctions, Phys. Rev. B 41(5), 3117–3122 (1990)

    Google Scholar 

  97. Z. Zhou, R.A. Friesner, L. Brus, Electronic structure of 1 to 2 nm diameter silicon core/shell nanocrystals: surface chemistry, optical spectra, charge transfer, and doping. J. Am. Chem. Soc. 125, 15,599–15,607 (2003)

    Article  Google Scholar 

  98. O. Zitouni, K. Boujdaria, H. Bouchriha, Band parameters for GaAs and Si in the 24-k ⋅ p model, Semiconductor Science and Technology 20(9), 908 (2005).

    Google Scholar 

  99. A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, G. Abstreiter, Coherent properties of a two-level system based on a quantum-dot photodiode. Nature (London) 418, 612–614 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

Stanko Tomić* wishes to thank to the STFC e-Science, UK, for providing the computational resources, and the Royal Society, London, Research Grant “High Performance Computing in Modelling of Innovative High Efficiency Photovoltaic Devices”. Nenad Vukmirović was supported by European Community FP7 Marie Curie Career Integration Grant (ELECTROMAT), Serbian Ministry of Education, Science and Technological Development (project ON171017) and FP7 projects PRACE-2IP, PRACE-3IP, HP-SEE, and EGI-InSPIRE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanko Tomić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tomić, S., Vukmirović, N. (2014). Symmetries in Multiband Hamiltonians for Semiconductor Quantum Dots. In: Ehrhardt, M., Koprucki, T. (eds) Multi-Band Effective Mass Approximations. Lecture Notes in Computational Science and Engineering, vol 94. Springer, Cham. https://doi.org/10.1007/978-3-319-01427-2_3

Download citation

Publish with us

Policies and ethics