Skip to main content

Microwave Material Characterization

  • Chapter
  • First Online:

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In a design of a tunable device, precise knowledge of material parameters is essential to know; indeed it is the first data to be provided, to define feature sizes in a layout. In accordance with the scope of this work, the materials refer the tunable liquid crystals (LCs) and glass substrates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The setup is not realized by the author.

References

  1. AF45 alkali free thin glass. Praezisions Glas and Optik GmbH, http://www.pgo-online.com/intl/katalog/AF45.html

  2. J. Baker-Jarvis, M.D. Janezic, J.H. Grosvenor, R.G. Geyer, Transmission/reflection and short-circuit line methods for measuring permittivity and permeability. Technical report, National Institute of Standards and Technology, 1355-R, 1993

    Google Scholar 

  3. L.F. Chen, C.K. Ong, C.P. Neo, V.V. Varadan, V.K. Varadan, Microwave Electronics: Measurement and Materials Characterization (Wiley, New York, 2004)

    Google Scholar 

  4. R.J. Collier, A.D. Skinner (eds.), Microwave Measurements, 3rd edn. (IET Electrical Measurement Series) (The Institution of Engineering and Technology, London, 2007)

    Google Scholar 

  5. X. Dong, L. Mai, X. Chen, Computation of the characteristic impedance of eccentric coaxial transmission lines by boundary element method, in Proceedings of World Automation Congress WAC, 2008, pp. 1–5, 2008

    Google Scholar 

  6. D263 T borosilicate thin glass. Praezisions Glas and Optik GmbH, http://www.pgo-online.com/intl/katalog/D263.html

  7. W.R. Eisenstadt, Y. Eo, S-parameter-based ic interconnect transmission line characterization. IEEE Trans. Compon. Hybrids Manuf. Technol. 15(4), 483–490 (1992)

    Article  Google Scholar 

  8. D.A. Frickey, Conversions between s, z, y, h, abcd, and t parameters which are valid for complex source and load impedances. IEEE Trans. Microw. Theory Tech. 42, 205–211 (1994)

    Article  Google Scholar 

  9. F. Goelden, Liquid crystal based microwave components with fast response times: material, technology, power handling capability. PhD thesis, Technische Universitaet Darmstadt, 2009

    Google Scholar 

  10. G. Kent, Nondestructive permittivity measurement of substrates. IEEE Trans. Instrum. meas. 45, 102–106 (1996)

    Article  Google Scholar 

  11. G.S. Krantz, Handbook of Complex Variables (Birkhauser, Boston, 1999)

    Book  MATH  Google Scholar 

  12. P. Moon, D.E. Spencer, Field Theory Handbook: Including Coordinate Systems, Differential Equations and Their Solutions (Springer, New York, 1988)

    Google Scholar 

  13. S. Mueller, Grundlegende Untersuchungen steuerbarer passiver Flüssigkristall-Komponenten für die Mikrowellentechnik. PhD thesis, Technische Universitaet Darmstadt, 2007

    Google Scholar 

  14. A.M. Nicolson, G.F. Ross, Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum. Meas. 19(4), 377–382 (1970)

    Article  Google Scholar 

  15. D.M. Pozar, Microwave Engineering, 4th edn. (Wiley, New York, 2011)

    Google Scholar 

  16. SCHOTT. AF 32 thin glass, http://www.schott.com/special_applications/english/download/schott_af32_eco_thinglass_july_2011_data_sheet_eng.pdf?PHPSESSID=d653rl07j4vqd3hpi2l5b5f0t6

  17. SCHOTT. B 270 flat glass, http://www.schott.com/special_applications/english/download/schott_b_270_flat_glass_june_2012_eng.pdf

  18. SCHOTT. Schott borofloat 33, http://www.schott.com/borofloat/english/download/borofloat_33_e.pdf

  19. SCHOTT. Synthetic fused silica, http://www.schott.com/korea/korean/download/datasheet_fused_silica_.pdf

  20. W. Seifert, M. Ueltzen, C. Strumpel, W. Heiliger, E. Muller, One-dimensional modeling of a peltier element, in Proceedings of XX International Conference on Thermoelectrics ICT 2001, pp. 439–443, 2001

    Google Scholar 

  21. B.E. Sernelius, Electrodynamics, TFYY67, NFYD70. Linkoping Institute of Technology Department of Physics, Chemistry and Biology, http://www.ifm.liu.se/courses/TFYY67/tenta060317.pdf (2006)

  22. W.B. Weir, Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE 62(1), 33–36 (1974)

    Article  Google Scholar 

  23. H.Y. Yee, N.F. Audeh, Cutoff frequencies of eccentric waveguides. IEEE Trans. Microw. TheoryTech. 14(10), 487–493 (1966)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onur Hamza Karabey .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Karabey, O.H. (2014). Microwave Material Characterization. In: Electronic Beam Steering and Polarization Agile Planar Antennas in Liquid Crystal Technology. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01424-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01424-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01423-4

  • Online ISBN: 978-3-319-01424-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics