Skip to main content

Some Analytical Techniques in Fractional Calculus: Realities and Challenges

  • Chapter
  • First Online:
Discontinuity and Complexity in Nonlinear Physical Systems

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 6))

Abstract

In the last decades, much effort has been dedicated to analytical aspects of the fractional differential equations. The Adomian decomposition method and the variational iteration method have been developed from ordinary calculus and become two frequently used analytical methods. In this article, the recent developments of the methods in the fractional calculus are reviewed. The realities and challenges are comprehensively encompassed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbasbandy S (2007) An approximation solution of a nonlinear equation with Riemann–Liouville’s fractional derivatives by He’s variational iteration method. J Comput Appl Math 207:53–58

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdelrazec A, Pelinovsky D (2011) Convergence of the Adomian decomposition method for initial-value problems. Numer Methods Partial Differ Equ 27:749–766

    Article  MathSciNet  MATH  Google Scholar 

  3. Adomian G (1983) Stochastic systems. Academic, New York

    MATH  Google Scholar 

  4. Adomian G (1986) Nonlinear stochastic operator equations. Academic, Orlando

    MATH  Google Scholar 

  5. Adomian G (1989) Nonlinear stochastic systems theory and applications to physics. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  6. Adomian G (1994) Solving Frontier problems of physics: the decomposition method. Kluwer Academic, Dordrecht

    Book  MATH  Google Scholar 

  7. Adomian G, Rach R (1983) Inversion of nonlinear stochastic operators. J Math Anal Appl 91:39–46

    Article  MathSciNet  MATH  Google Scholar 

  8. Adomian G, Rach R (1991) Transformation of series. Appl Math Lett 4:69–71

    Article  MathSciNet  MATH  Google Scholar 

  9. Adomian G, Rach R (1992) Nonlinear transformation of series – part II. Comput Math Appl 23:79–83

    Article  MathSciNet  MATH  Google Scholar 

  10. Adomian G, Rach R (1993) Analytic solution of nonlinear boundary-value problems in several dimensions by decomposition. J Math Anal Appl 174:118–137

    Article  MathSciNet  MATH  Google Scholar 

  11. Adomian G, Rach R (1993) A new algorithm for matching boundary conditions in decomposition solutions. Appl Math Comput 58:61–68

    Article  MathSciNet  MATH  Google Scholar 

  12. Adomian G, Rach R (1996) Modified Adomian polynomials. Math Comput Model 24:39–46

    Article  MathSciNet  MATH  Google Scholar 

  13. Adomian G, Rach R, Meyers RE (1997) Numerical integration, analytic continuation, and decomposition. Appl Math Comput 88:95–116

    Article  MathSciNet  MATH  Google Scholar 

  14. Agarwal RP, Arshad S, O’Regan D, Lupulescu V (2012) Fuzzy fractional integral equations under compactness type condition. Fract Calc Appl Anal 15:572–590

    MathSciNet  Google Scholar 

  15. Al-Sawalha MM, Noorani MSM, Hashim I (2008) Numerical experiments on the hyperchaotic Chen system by the Adomian decomposition method. Int J Comput Methods 5:403–412

    Article  MathSciNet  MATH  Google Scholar 

  16. Arora HL, Abdelwahid FI (1993) Solution of non-integer order differential equations via the Adomian decomposition method. Appl Math Lett 6:21–23

    Article  MathSciNet  MATH  Google Scholar 

  17. Bhalekar S, Daftardar-Gejji V, Baleanu D, Magin R (2011) Fractional Bloch equation with delay. Comput Math Appl 61:1355–1365

    Article  MathSciNet  MATH  Google Scholar 

  18. Bigi D, Riganti R (1986) Solution of nonlinear boundary value problems by the decomposition method. Appl Math Model 10:49–52

    Article  MATH  Google Scholar 

  19. Băleanu D, Diethelm K, Scalas E, Trujillo JJ (2012) Fractional calculus models and numerical methods (series on complexity, nonlinearity and chaos). World Scientific, Boston

    Google Scholar 

  20. Băleanu D, Mustafa OG, Agarwal RP (2010) On the solution set for a class of sequential fractional differential equations. J Phys A Math Theor 43:385209

    Article  Google Scholar 

  21. Băleanu D, Mustafa OG, O’Regan D (2012) On a fractional differential equation with infinitely many solutions. Adv Differ Equ 2012:145

    Article  Google Scholar 

  22. Chen Y, An HL (2008) Numerical solutions of coupled Burgers equations with time- and space-fractional derivatives. Appl Math Comput 200:87–95

    Article  MathSciNet  MATH  Google Scholar 

  23. Cherruault Y (1989) Convergence of Adomian’s method. Kybernetes 18:31–38

    Article  MathSciNet  MATH  Google Scholar 

  24. Cherruault Y, Adomian G (1993) Decomposition methods: a new proof of convergence. Math Comput Model 18:103–106

    Article  MathSciNet  MATH  Google Scholar 

  25. Daftardar-Gejji V, Jafari H (2005) Adomian decomposition: a tool for solving a system of fractional differential equations. J Math Anal Appl 301:508–518

    Article  MathSciNet  MATH  Google Scholar 

  26. Dehghan M, Tatari M (2010) Finding approximate solutions for a class of third-order non-linear boundary value problems via the decomposition method of Adomian. Int J Comput Math 87:1256–1263

    Article  MathSciNet  MATH  Google Scholar 

  27. Deng WH (2007) Numerical algorithm for the time fractional Fokker-Planck equation. J Comput Phys 227:1510–1522

    Article  MathSciNet  MATH  Google Scholar 

  28. Diethelm K (2004) The analysis of fractional differential equations. Springer, New York

    Google Scholar 

  29. Diethelm K, Ford NJ (2004) Multi-order fractional differential equations and their numerical solution. Appl Math Comput 154:621–640

    Article  MathSciNet  MATH  Google Scholar 

  30. Duan JS (2005) Time- and space-fractional partial differential equations. J Math Phys 46:13504–13511

    Article  Google Scholar 

  31. Duan JS (2010) Recurrence triangle for Adomian polynomials. Appl Math Comput 216: 1235–1241

    Article  MathSciNet  MATH  Google Scholar 

  32. Duan JS (2010) An efficient algorithm for the multivariable Adomian polynomials. Appl Math Comput 217:2456–2467

    Article  MathSciNet  MATH  Google Scholar 

  33. Duan JS (2011) Convenient analytic recurrence algorithms for the Adomian polynomials. Appl Math Comput 217:6337–6348

    Article  MathSciNet  MATH  Google Scholar 

  34. Duan JS (2011) New recurrence algorithms for the nonclassic Adomian polynomials. Comput Math Appl 62:2961–2977

    Article  MathSciNet  MATH  Google Scholar 

  35. Duan JS (2011) New ideas for decomposing nonlinearities in differential equations. Appl Math Comput 218:1774–1784

    Article  MathSciNet  MATH  Google Scholar 

  36. Duan JS, Rach R (2011) New higher-order numerical one-step methods based on the Adomian and the modified decomposition methods. Appl Math Comput 218:2810–2828

    Article  MathSciNet  MATH  Google Scholar 

  37. Duan JS, Rach R (2011) A new modification of the Adomian decomposition method for solving boundary value problems for higher order nonlinear differential equations. Appl Math Comput 218:4090–4118

    Article  MathSciNet  MATH  Google Scholar 

  38. Duan JS, Rach R (2012) Higher-order numeric Wazwaz-El-Sayed modified Adomian decomposition algorithms. Comput Math Appl 63:1557–1568

    Article  MathSciNet  MATH  Google Scholar 

  39. Duan JS, Chaolu T, Rach R (2012) Solutions of the initial value problem for nonlinear fractional ordinary differential equations by the Rach-Adomian-Meyers modified decomposition method. Appl Math Comput 218:8370–8392

    Article  MathSciNet  MATH  Google Scholar 

  40. Duan JS, Rach R, Băleanu D, Wazwaz AM (2012) A review of the Adomian decomposition method and its applications to fractional differential equations, Commun Fract Calc 3:73–99

    Google Scholar 

  41. Duan JS, Chaolu T, Rach R, Lu L (2013) The Adomian decomposition method with convergence acceleration techniques for nonlinear fractional differential equations. Comput Math Appl. 66:728–736

    Article  MathSciNet  Google Scholar 

  42. Duan JS, Rach R, Wang Z (2013) On the effective region of convergence of the decomposition series solution. J Algorithm Comput Tech 7:227–247

    Article  MathSciNet  Google Scholar 

  43. Duan JS, Wang Z, Fu SZ, Chaolu T (2013) Parametrized temperature distribution and efficiency of convective straight fins with temperature-dependent thermal conductivity by a new modified decomposition method. Int J Heat Mass Transf 59:137–143

    Article  Google Scholar 

  44. Duan JS, Rach R, Wazwaz AM (2013) Solution of the model of beam-type micro- and nano-scale electrostatic actuators by a new modified Adomian decomposition method for nonlinear boundary value problems. Int J Non Linear Mech 49:159–169

    Article  Google Scholar 

  45. Duan JS, Rach R, Wazwaz AM, Chaolu T, Wang Z (2013) A new modified Adomian decomposition method and its multistage form for solving nonlinear boundary value problems with Robin boundary conditions. Appl Math Model. doi:10.1016/j.apm.2013.02.002

    Google Scholar 

  46. Duan JS, Wang Z, Liu YL, Qiu X (2013) Eigenvalue problems for fractional ordinary differential equations. Chaos Solitons Fractals 46:46–53

    Article  MathSciNet  MATH  Google Scholar 

  47. Gabet L (1994) The theoretical foundation of the Adomian method. Comput Math Appl 27: 41–52

    Google Scholar 

  48. George AJ, Chakrabarti A (1995) The Adomian method applied to some extraordinary differential equations. Appl Math Lett 8:391–397

    Article  MathSciNet  Google Scholar 

  49. Ghorbani A (2008) Toward a new analytical method for solving nonlinear fractional differential equations. Comput Methods Appl Mech Eng 197(49–50):4173–4179

    Article  MathSciNet  MATH  Google Scholar 

  50. He JH (1998) Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput Methods Appl Mech Eng 167:57–68

    Article  MATH  Google Scholar 

  51. He JH (1999) Variational iteration method - a kind of non-linear analytical technique: some examples. Int J Non Linear Mech 34:699–708

    Article  MATH  Google Scholar 

  52. He JH (2006) Some asymptotic methods for strongly nonlinear equations. Int J Mod Phys B 20:1141–1199

    Article  Google Scholar 

  53. He JH (2012) Asymptotic methods for solitary solutions and compactons. Abstr Appl Anal 2012, Article ID 916793, 130 pp

    Google Scholar 

  54. He JH, Wu XH (2007) Variational iteration method: new development and applications. Comput Math Appl 54:881–894

    Article  MathSciNet  MATH  Google Scholar 

  55. Inc M (2008) The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method. J Math Anal Appl 345: 476–484

    Article  MathSciNet  MATH  Google Scholar 

  56. Jafari H, Daftardar-Gejji V (2006) Solving a system of nonlinear fractional differential equations using Adomian decomposition. J Comput Appl Math 196:644–651

    Article  MathSciNet  MATH  Google Scholar 

  57. Jafari H, Daftardar-Gejji V (2006) Positive solutions of nonlinear fractional boundary value problems using Adomian decomposition method. Appl Math Comput 180:700–706

    Article  MathSciNet  MATH  Google Scholar 

  58. Jafari H, Kadem A, Baleanu D, Yilmaz T (2012) Solutions of the fractional davey-stewartson equations with variational iteration method. Rom Rep Phys 64:337–346

    Google Scholar 

  59. Khuri SA, Sayfy A (2012) A Laplace variational iteration strategy for the solution of differential equations. Appl Math Lett 25:2298–2305

    Article  MathSciNet  MATH  Google Scholar 

  60. Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, Amsterdam

    MATH  Google Scholar 

  61. Klafter J, Lim SC, Metzler R (2011) Fractional dynamics: recent advances. World Scientific, Singapore

    Book  Google Scholar 

  62. Lesnic D (2008) The decomposition method for nonlinear, second-order parabolic partial differential equations. Int J Comput Math Numer Simul 1:207–233

    Google Scholar 

  63. Li CP, Wang YH (2009) Numerical algorithm based on Adomian decomposition for fractional differential equations. Comput Math Appl 57:1672–1681

    Article  MathSciNet  MATH  Google Scholar 

  64. Mainardi F (1996) Fractional relaxation oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 7:1461–1477

    Article  MathSciNet  MATH  Google Scholar 

  65. Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity. Imperial College, London

    Book  MATH  Google Scholar 

  66. Momani S, Odibat Z (2007) Numerical comparison of methods for solving linear differential equations of fractional order. Chaos Solitons Fractals 31:1248–1255

    Article  MathSciNet  MATH  Google Scholar 

  67. Momani S, Shawagfeh N (2006) Decomposition method for solving fractional Riccati differential equations. Appl Math Comput 182:1083–1092

    Article  MathSciNet  MATH  Google Scholar 

  68. Nawaz Y (2011) Variational iteration method and homotopy perturbation method for fourth-order fractional integro-differential equations. Comput Math Appl 61:2330–2341

    Article  MathSciNet  MATH  Google Scholar 

  69. Odibat ZM, Momani S (2006) Application of variational iteration method to Nonlinear differential equations of fractional order. Int J Non Linear Sci Numer Simul 7:27–34

    Google Scholar 

  70. Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  71. Rach R (1984) A convenient computational form for the Adomian polynomials. J Math Anal Appl 102:415–419

    Article  MathSciNet  MATH  Google Scholar 

  72. Rach R (1987) On the Adomian (decomposition) method and comparisons with Picard’s method. J Math Anal Appl 128:480–483

    Article  MathSciNet  MATH  Google Scholar 

  73. Rach R (2008) A new definition of the Adomian polynomials, Kybernetes 37:910–955

    Article  MathSciNet  MATH  Google Scholar 

  74. Rach R (2012) A bibliography of the theory and applications of the Adomian decomposition method, 1961–2011. Kybernetes 41:1087–1148

    MathSciNet  Google Scholar 

  75. Rach R, Duan JS (2011) Near-field and far-field approximations by the Adomian and asymptotic decomposition methods. Appl Math Comput 217:5910–5922

    Article  MathSciNet  MATH  Google Scholar 

  76. Rach R, Adomian G, Meyers RE (1992) A modified decomposition. Comput Math Appl 23: 17–23

    Article  MathSciNet  MATH  Google Scholar 

  77. Ray SS, Bera RK (2005) An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method. Appl Math Comput 167:561–571

    Article  MathSciNet  MATH  Google Scholar 

  78. Shawagfeh NT (2002) Analytical approximate solutions for nonlinear fractional differential equations. Appl Math Comput 131:517–529

    Article  MathSciNet  MATH  Google Scholar 

  79. Wang YH, Wu GC, Baleanu D (2013) Variational iteration method-a promising technique for constructing equivalent integral equations of fractional order. Cent Eur J Phys. doi:10.2478/s11534-013-0207-3

    Google Scholar 

  80. Wazwaz AM (1999) A reliable modification of Adomian decomposition method. Appl Math Comput 102:77–86

    Article  MathSciNet  MATH  Google Scholar 

  81. Wazwaz AM (2000) A new algorithm for calculating Adomian polynomials for nonlinear operators. Appl Math Comput 111:53–69

    Article  MathSciNet  Google Scholar 

  82. Wazwaz AM (2000) The modified Adomian decomposition method for solving linear and nonlinear boundary value problems of tenth-order and twelfth-order. Int J Non Linear Sci Numer Simul 1:17–24

    MathSciNet  MATH  Google Scholar 

  83. Wazwaz AM (2009) Partial differential equations and solitary waves theory. Higher Education, Beijing/Springer, Berlin

    Book  MATH  Google Scholar 

  84. Wazwaz AM (2011) Linear and nonlinear integral equations: methods and applications. Higher Education, Beijing/Springer, Berlin

    Book  Google Scholar 

  85. Wazwaz AM, El-Sayed SM (2001) A new modification of the Adomian decomposition method for linear and nonlinear operators. Appl Math Comput 122:393–405

    Article  MathSciNet  MATH  Google Scholar 

  86. Wazwaz AM, Rach R (2011) Comparison of the Adomian decomposition method and the variational iteration method for solving the Lane-Emden equations of the first and second kinds. Kybernetes 40:1305–1318

    Article  MathSciNet  Google Scholar 

  87. Wu GC (2012) Variational iteration method for solving the time-fractional diffusion equations in porous medium. Chin Phys B 21:120504

    Article  Google Scholar 

  88. Wu GC (2012) Laplace transform overcoming principle drawbacks in application of the variational iteration method to fractional heat equations. Therm Sci 16:1357–1361

    Google Scholar 

  89. Wu GC, Băleanu D (2013) Variational iteration method for fractional calculus - a universal approach by Laplace transform. Adv Diff Equ 2013:18

    Article  Google Scholar 

  90. Wu GC, Băleanu D (2013) New applications of the variational iteration method-from differential equations to q-fractional difference equations. Adv Diff Equ 2013:21

    Article  Google Scholar 

  91. Wu GC, Băleanu D (2013) Variational iteration method for the Burgers’ flow with fractional derivatives-New Lagrange mutipliers. Appl Math Model 37:6183–6190

    Article  MathSciNet  Google Scholar 

  92. Wu GC, Shi YG, Wu KT (2011) Adomian decomposition method and non-analytical solutions of fractional differential equations. Rom J Phys 56:873–880

    MathSciNet  Google Scholar 

  93. Yang SP, Xiao AG, Su H (2010) Convergence of the variational iteration method for solving multi-order fractional differential equations. Comput Math Appl 60:2871–2879

    Article  MathSciNet  MATH  Google Scholar 

  94. Yaslan HC (2012) Variational iteration method for the time-fractional elastodynamics of 3D Quasicrystals. Comput Model Eng Sci 86:29–38

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by the National Natural Science Foundation of China (No. 11171295, No. 11061028) and the key program (51134018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Baleanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baleanu, D., Wu, GC., Duan, JS. (2014). Some Analytical Techniques in Fractional Calculus: Realities and Challenges. In: Machado, J., Baleanu, D., Luo, A. (eds) Discontinuity and Complexity in Nonlinear Physical Systems. Nonlinear Systems and Complexity, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-01411-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01411-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01410-4

  • Online ISBN: 978-3-319-01411-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics