Skip to main content

Ramsey Numbers

  • Chapter
  • First Online:
Ramsey Theory for Discrete Structures
  • 1206 Accesses

Abstract

The finite version of Ramsey’s theorem asserts that for every triple k, m and r of positive integers there exists a positive integer n such that n → (m) r k. In Sect. 1.2 a compactness argument was used to derive this result from the infinite Ramsey theorem not giving any information about the size of n

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajtai, M., Komlós, J., Szemerédi, E.: A note on Ramsey numbers. J. Comb. Theory A 29, 354–360 (1980)

    Article  MATH  Google Scholar 

  • Ajtai, M., Komlós, J., Szemerédi, E.: A dense infinite Sidon sequence. Eur. J. Comb. 2, 1–11 (1981)

    Article  MATH  Google Scholar 

  • Bohman, T.: The triangle-free process. Adv. Math. 221, 1653–1677 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Bohman, T., Keevash, P.: The early evolution of the H-free process. Invent. Math. 181, 291–336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  • Chung, F.R.K., Grinstead, C.M.: A survey of bounds for classical Ramsey numbers. J. Graph Theory 7, 25–37 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Conlon, D.: A new upper bound for diagonal Ramsey numbers. Ann. Math. 170, 941–960 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Erdős, P.: Some remarks on the theory of graphs. Bull. Am. Math. Soc. 53, 292–294 (1947)

    Article  Google Scholar 

  • Erdős, P.: Graph theory and probability. II. Can. J. Math. 13, 346–352 (1961)

    Article  Google Scholar 

  • Erdős, P.: On the combinatorial problems which I would most like to see solved. Combinatorica 1, 25–42 (1981)

    Article  MathSciNet  Google Scholar 

  • Erdős, P.: Welcoming address. In: Random Graphs ’83 (Poznań, 1983), pp. 1–5. North-Holland, Amsterdam (1985)

    Google Scholar 

  • Erdős, P., Rado, R.: A combinatorial theorem. J. Lond. Math. Soc. 25, 249–255 (1950)

    Article  Google Scholar 

  • Erdős, P., Rado, R.: Combinatorial theorems on classifications of subsets of a given set. Proc. Lond. Math. Soc. 2, 417–439 (1952)

    Article  Google Scholar 

  • Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2, 463–470 (1935)

    Google Scholar 

  • Fredricksen, H.: Schur numbers and the Ramsey numbers N(3, 3, ⋯, 3; 2). J. Comb. Theory A 27, 376–377 (1979)

    Article  MathSciNet  Google Scholar 

  • Graver, J.E., Yackel, J.: Some graph theoretic results associated with Ramsey’s theorem. J. Comb. Theory 4, 125–175 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  • Greenwood, R.E., Gleason, A.M.: Combinatorial relations and chromatic graphs. Can. J. Math. 7, 1–7 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  • Kalbfleisch, J.G.: Chromatic graphs and Ramsey’s theorem. Phd. Thesis, University of Waterloo (1966)

    Google Scholar 

  • Kim, J.H.: The Ramsey number R(3, t) has order of magnitude t 2∕logt. Random Struct. Algorithms 7, 173–207 (1995)

    MATH  Google Scholar 

  • Radziszowski, S.: Small Ramsey numbers. Electron. J. Comb. Dyn. Surv. DS1 (2011)

    Google Scholar 

  • Shearer, J.B.: A note on the independence number of triangle-free graphs. Discrete Math. 46, 83–87 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Spencer, J.: Ramsey’s theorem – a new lower bound. J. Comb. Theory A 18, 108–115 (1975a)

    Article  MATH  Google Scholar 

  • Spencer, J.: Asymptotic lower bounds for Ramsey functions. Discrete Math. 20, 69–76 (1977)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Prömel, H.J. (2013). Ramsey Numbers. In: Ramsey Theory for Discrete Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-01315-2_7

Download citation

Publish with us

Policies and ethics