Hales-Jewett’s Theorem

  • Hans Jürgen Prömel


Tic-Tac-Toe is a game played by two people writing the symbols O and X in turn on a pattern of nine squares with the purpose of getting three such marks in a row. Of course, the traditional 3 × 3 Tic-Tac-Toe need not to have a winner, the second player can achieve a tie.


  1. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society, Providence (1967)MATHGoogle Scholar
  2. Grätzer, G.: General Lattice Theory, 2nd edn. Birkhäuser Verlag, Basel (1998)MATHGoogle Scholar
  3. Hales, A.W., Jewett, R.I.: Regularity and positional games. Trans. Am. Math. Soc. 106, 222–229 (1963)MathSciNetCrossRefMATHGoogle Scholar
  4. Ježek, J., Nešetřil, J.: Ramsey varieties. Eur. J. Comb. 4, 143–147 (1983)CrossRefMATHGoogle Scholar
  5. Pouzet, M., Rosenberg, I.G.: Ramsey properties for classes of relational systems. Eur. J. Comb. 6, 361–368 (1985)MathSciNetCrossRefMATHGoogle Scholar
  6. Prömel, H.J., Voigt, B.: Partition theorems for parameter systems and graphs. Discrete Math. 36, 83–96 (1981b)MathSciNetMATHGoogle Scholar
  7. Pudlák, P., Tu̇ma, J.: Every finite lattice can be embedded in a finite partition lattice. Algebr. Univers. 10, 74–95 (1980)Google Scholar
  8. Rado, R.: Note on combinatorial analysis. Proc. Lond. Math. Soc. 48, 122–160 (1943)MathSciNetMATHGoogle Scholar
  9. Shelah, S.: Primitive recursive bounds for van der Waerden numbers. J. Am. Math. Soc. 1, 683–697 (1988)CrossRefMATHGoogle Scholar
  10. Voigt, B.: The partition problem for finite Abelian groups. J. Comb. Theory A 28, 257–271 (1980)MathSciNetCrossRefMATHGoogle Scholar
  11. Witt, E.: Ein kombinatorischer Satz der Elementargeometrie. Math. Nachr. 6, 261–262 (1952)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Hans Jürgen Prömel
    • 1
  1. 1.Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations