Advertisement

Szemerédi’s Theorem

  • Hans Jürgen Prömel
Chapter

Abstract

In 2012 Endré Szemerédi, born 1940 in Budapest, received the Abel prize Abel prize in mathematics. Together with the fields medal the Abel prize is the most prestigious award in mathematics.

References

  1. Erdős, P., Turán, P.: On some sequences of integers. J. Lond. Math. Soc. 11, 261–264 (1936)CrossRefGoogle Scholar
  2. Erdős, P., Hajnal, A., Máté, A., Rado, R.: Combinatorial Set Theory: Partition Relations for Cardinals. North-Holland, Amsterdam (1984)Google Scholar
  3. Furstenberg, H.: Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. Anal. Math. 31, 204–256 (1977)MathSciNetCrossRefMATHGoogle Scholar
  4. Furstenberg, H., Katznelson, Y.: An ergodic Szemerédi theorem for commuting transformations. J. Anal. Math. 34, 275–291 (1979, 1978)Google Scholar
  5. Furstenberg, H., Katznelson, Y., Ornstein, D.: The ergodic theoretical proof of Szemerédi’s theorem. Bull. Am. Math. Soc. (N.S.) 7, 527–552 (1982)Google Scholar
  6. Gowers, W.: A new proof of Szemerédi’s theorem. Geom. Funct. Anal. 11, 465–588 (2001)MathSciNetCrossRefMATHGoogle Scholar
  7. Gowers, W.T.: Quasirandomness, counting and regularity for 3-uniform hypergraphs. Comb. Probab. Comput. 15, 143–184 (2006)MathSciNetCrossRefMATHGoogle Scholar
  8. Gowers, W.T.: Hypergraph regularity and the multidimensional Szemerédi theorem. Ann. Math. 166, 897–946 (2007)MathSciNetCrossRefMATHGoogle Scholar
  9. Nagle, B., Rödl, V., Schacht, M.: The counting lemma for regular k-uniform hypergraphs. Random Struct. Algorithms 28, 113–179 (2006)CrossRefMATHGoogle Scholar
  10. Rödl, V., Skokan, J.: Regularity lemma for k-uniform hypergraphs. Random Struct. Algorithms 25, 1–42 (2004)CrossRefMATHGoogle Scholar
  11. Roth, K.F.: On certain sets of integers. J. Lond. Math. Soc. 28, 104–109 (1953)CrossRefMATHGoogle Scholar
  12. Szemerédi, E.: On sets of integers containing no four elements in arithmetic progression. Acta Math. Acad. Sci. Hung. 20, 89–104 (1969)CrossRefMATHGoogle Scholar
  13. Szemerédi, E.: On sets of integers containing no k elements in arithmetic progression. Acta Arith. 27, 199–245 (1975)MathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Hans Jürgen Prömel
    • 1
  1. 1.Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations